Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Microsoft has developed E5 Text Embeddings, which are sophisticated models that transform textual information into meaningful vector forms, thereby improving functionalities such as semantic search and information retrieval. Utilizing weakly-supervised contrastive learning, these models are trained on an extensive dataset comprising over one billion pairs of texts, allowing them to effectively grasp complex semantic connections across various languages. The E5 model family features several sizes—small, base, and large—striking a balance between computational efficiency and the quality of embeddings produced. Furthermore, multilingual adaptations of these models have been fine-tuned to cater to a wide array of languages, making them suitable for use in diverse global environments. Rigorous assessments reveal that E5 models perform comparably to leading state-of-the-art models that focus exclusively on English, regardless of size. This indicates that the E5 models not only meet high standards of performance but also broaden the accessibility of advanced text embedding technology worldwide.

Description

Transform your embeddings effortlessly with a single, powerful tool. Discover an extensive database crafted to deliver embedding capabilities that previously necessitated several different platforms, making it easier than ever to enhance your machine learning endeavors swiftly and seamlessly with Embeddinghub. Embeddings serve as compact, numerical representations of various real-world entities and their interrelations, represented as vectors. Typically, they are generated by first establishing a supervised machine learning task, often referred to as a "surrogate problem." The primary goal of embeddings is to encapsulate the underlying semantics of their originating inputs, allowing them to be shared and repurposed for enhanced learning across multiple machine learning models. With Embeddinghub, achieving this process becomes not only streamlined but also incredibly user-friendly, ensuring that users can focus on their core functions without unnecessary complexity.

API Access

Has API

API Access

Has API

Screenshots View All

No images available

Screenshots View All

Integrations

No details available.

Integrations

No details available.

Pricing Details

Free
Free Trial
Free Version

Pricing Details

Free
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Microsoft

Founded

1975

Country

United States

Website

github.com/microsoft/unilm/tree/master/e5

Vendor Details

Company Name

Featureform

Founded

2019

Country

United States

Website

www.featureform.com/embeddinghub

Product Features

Alternatives

Alternatives

txtai Reviews

txtai

NeuML
word2vec Reviews

word2vec

Google