Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Deequ is an innovative library that extends Apache Spark to create "unit tests for data," aiming to assess the quality of extensive datasets. We welcome any feedback and contributions from users. The library requires Java 8 for operation. It is important to note that Deequ version 2.x is compatible exclusively with Spark 3.1, and the two are interdependent. For those using earlier versions of Spark, the Deequ 1.x version should be utilized, which is maintained in the legacy-spark-3.0 branch. Additionally, we offer legacy releases that work with Apache Spark versions ranging from 2.2.x to 3.0.x. The Spark releases 2.2.x and 2.3.x are built on Scala 2.11, while the 2.4.x, 3.0.x, and 3.1.x releases require Scala 2.12. The primary goal of Deequ is to perform "unit-testing" on data to identify potential issues early on, ensuring that errors are caught before the data reaches consuming systems or machine learning models. In the sections that follow, we will provide a simple example to demonstrate the fundamental functionalities of our library, highlighting its ease of use and effectiveness in maintaining data integrity.

Description

Spark Streaming extends the capabilities of Apache Spark by integrating its language-based API for stream processing, allowing you to create streaming applications in the same manner as batch applications. This powerful tool is compatible with Java, Scala, and Python. One of its key features is the automatic recovery of lost work and operator state, such as sliding windows, without requiring additional code from the user. By leveraging the Spark framework, Spark Streaming enables the reuse of the same code for batch processes, facilitates the joining of streams with historical data, and supports ad-hoc queries on the stream's state. This makes it possible to develop robust interactive applications rather than merely focusing on analytics. Spark Streaming is an integral component of Apache Spark, benefiting from regular testing and updates with each new release of Spark. Users can deploy Spark Streaming in various environments, including Spark's standalone cluster mode and other compatible cluster resource managers, and it even offers a local mode for development purposes. For production environments, Spark Streaming ensures high availability by utilizing ZooKeeper and HDFS, providing a reliable framework for real-time data processing. This combination of features makes Spark Streaming an essential tool for developers looking to harness the power of real-time analytics efficiently.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Apache Spark
PubSub+ Platform

Integrations

Apache Spark
PubSub+ Platform

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Deequ

Website

github.com/awslabs/deequ

Vendor Details

Company Name

Apache Software Foundation

Founded

1999

Country

United States

Website

spark.apache.org/streaming/

Product Features

Alternatives

Alternatives

Samza Reviews

Samza

Apache Software Foundation
Spark Streaming Reviews

Spark Streaming

Apache Software Foundation
ksqlDB Reviews

ksqlDB

Confluent
MLlib Reviews

MLlib

Apache Software Foundation
Apache Spark Reviews

Apache Spark

Apache Software Foundation
Apache Spark Reviews

Apache Spark

Apache Software Foundation
Apache Mahout Reviews

Apache Mahout

Apache Software Foundation
MLlib Reviews

MLlib

Apache Software Foundation