Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

DeepCube is dedicated to advancing deep learning technologies, enhancing the practical application of AI systems in various environments. Among its many patented innovations, the company has developed techniques that significantly accelerate and improve the accuracy of training deep learning models while also enhancing inference performance. Their unique framework is compatible with any existing hardware, whether in data centers or edge devices, achieving over tenfold improvements in speed and memory efficiency. Furthermore, DeepCube offers the sole solution for the effective deployment of deep learning models on intelligent edge devices, overcoming a significant barrier in the field. Traditionally, after completing the training phase, deep learning models demand substantial processing power and memory, which has historically confined their deployment primarily to cloud environments. This innovation by DeepCube promises to revolutionize how deep learning models can be utilized, making them more accessible and efficient across diverse platforms.

Description

DL4J leverages state-of-the-art distributed computing frameworks like Apache Spark and Hadoop to enhance the speed of training processes. When utilized with multiple GPUs, its performance matches that of Caffe. Fully open-source under the Apache 2.0 license, the libraries are actively maintained by both the developer community and the Konduit team. Deeplearning4j, which is developed in Java, is compatible with any language that runs on the JVM, including Scala, Clojure, and Kotlin. The core computations are executed using C, C++, and CUDA, while Keras is designated as the Python API. Eclipse Deeplearning4j stands out as the pioneering commercial-grade, open-source, distributed deep-learning library tailored for Java and Scala applications. By integrating with Hadoop and Apache Spark, DL4J effectively introduces artificial intelligence capabilities to business settings, enabling operations on distributed CPUs and GPUs. Training a deep-learning network involves tuning numerous parameters, and we have made efforts to clarify these settings, allowing Deeplearning4j to function as a versatile DIY resource for developers using Java, Scala, Clojure, and Kotlin. With its robust framework, DL4J not only simplifies the deep learning process but also fosters innovation in machine learning across various industries.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Apache Spark
Hadoop

Integrations

Apache Spark
Hadoop

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

DeepCube

Country

Israel

Website

www.deepcube.com/technology/

Vendor Details

Company Name

Deeplearning4j

Founded

2019

Country

Japan

Website

deeplearning4j.org

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

MXNet Reviews

MXNet

The Apache Software Foundation