Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Core ML utilizes a machine learning algorithm applied to a specific dataset to generate a predictive model. This model enables predictions based on incoming data, providing solutions for tasks that would be challenging or impossible to code manually. For instance, you could develop a model to classify images or identify particular objects within those images directly from their pixel data. Following the model's creation, it is essential to incorporate it into your application and enable deployment on users' devices. Your application leverages Core ML APIs along with user data to facilitate predictions and to refine or retrain the model as necessary. You can utilize the Create ML application that comes with Xcode to build and train your model. Models generated through Create ML are formatted for Core ML and can be seamlessly integrated into your app. Alternatively, a variety of other machine learning libraries can be employed, and you can use Core ML Tools to convert those models into the Core ML format. Once the model is installed on a user’s device, Core ML allows for on-device retraining or fine-tuning, enhancing its accuracy and performance. This flexibility enables continuous improvement of the model based on real-world usage and feedback.
Description
The SensiML Analytics Toolkit enables the swift development of smart IoT sensor devices while simplifying the complexities of data science. It focuses on creating compact algorithms designed to run on small IoT endpoints instead of relying on cloud processing. By gathering precise, traceable, and version-controlled datasets, it enhances data integrity. The toolkit employs advanced AutoML code generation to facilitate the rapid creation of autonomous device code. Users can select their preferred interface and level of AI expertise while maintaining full oversight of all algorithm components. It also supports the development of edge tuning models that adapt behavior based on incoming data over time. The SensiML Analytics Toolkit automates every step necessary for crafting optimized AI recognition code for IoT sensors. Utilizing an expanding library of sophisticated machine learning and AI algorithms, the overall workflow produces code capable of learning from new data, whether during development or after deployment. Moreover, non-invasive applications for rapid disease screening that intelligently classify multiple bio-sensing inputs serve as essential tools for aiding healthcare decision-making processes. This capability positions the toolkit as an invaluable resource in both tech and healthcare sectors.
API Access
Has API
API Access
Has API
Integrations
Apple tvOS
Apple watchOS
Xcode
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apple
Country
United States
Website
developer.apple.com/documentation/coreml
Vendor Details
Company Name
SensiML
Founded
2017
Country
United States
Website
sensiml.com
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization