Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Core ML utilizes a machine learning algorithm applied to a specific dataset to generate a predictive model. This model enables predictions based on incoming data, providing solutions for tasks that would be challenging or impossible to code manually. For instance, you could develop a model to classify images or identify particular objects within those images directly from their pixel data. Following the model's creation, it is essential to incorporate it into your application and enable deployment on users' devices. Your application leverages Core ML APIs along with user data to facilitate predictions and to refine or retrain the model as necessary. You can utilize the Create ML application that comes with Xcode to build and train your model. Models generated through Create ML are formatted for Core ML and can be seamlessly integrated into your app. Alternatively, a variety of other machine learning libraries can be employed, and you can use Core ML Tools to convert those models into the Core ML format. Once the model is installed on a user’s device, Core ML allows for on-device retraining or fine-tuning, enhancing its accuracy and performance. This flexibility enables continuous improvement of the model based on real-world usage and feedback.
Description
MLBox is an advanced Python library designed for Automated Machine Learning. This library offers a variety of features, including rapid data reading, efficient distributed preprocessing, comprehensive data cleaning, robust feature selection, and effective leak detection. It excels in hyper-parameter optimization within high-dimensional spaces and includes cutting-edge predictive models for both classification and regression tasks, such as Deep Learning, Stacking, and LightGBM, along with model interpretation for predictions. The core MLBox package is divided into three sub-packages: preprocessing, optimization, and prediction. Each sub-package serves a specific purpose: the preprocessing module focuses on data reading and preparation, the optimization module tests and fine-tunes various learners, and the prediction module handles target predictions on test datasets, ensuring a streamlined workflow for machine learning practitioners. Overall, MLBox simplifies the machine learning process, making it accessible and efficient for users.
API Access
Has API
API Access
Has API
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apple
Country
United States
Website
developer.apple.com/documentation/coreml
Vendor Details
Company Name
Axel ARONIO DE ROMBLAY
Founded
2017
Website
mlbox.readthedocs.io/en/latest/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization