Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Oversee and protect the entire data lifecycle from the Edge to AI across any cloud platform or data center. Functions seamlessly within all leading public cloud services as well as private clouds, providing a uniform public cloud experience universally. Unifies data management and analytical processes throughout the data lifecycle, enabling access to data from any location. Ensures the implementation of security measures, regulatory compliance, migration strategies, and metadata management in every environment. With a focus on open source, adaptable integrations, and compatibility with various data storage and computing systems, it enhances the accessibility of self-service analytics. This enables users to engage in integrated, multifunctional analytics on well-managed and protected business data, while ensuring a consistent experience across on-premises, hybrid, and multi-cloud settings. Benefit from standardized data security, governance, lineage tracking, and control, all while delivering the robust and user-friendly cloud analytics solutions that business users need, effectively reducing the reliance on unauthorized IT solutions. Additionally, these capabilities foster a collaborative environment where data-driven decision-making is streamlined and more efficient.
Description
Dask is a freely available open-source library that is developed in collaboration with various community initiatives such as NumPy, pandas, and scikit-learn. It leverages the existing Python APIs and data structures, allowing users to seamlessly transition between NumPy, pandas, and scikit-learn and their Dask-enhanced versions. The schedulers in Dask are capable of scaling across extensive clusters with thousands of nodes, and its algorithms have been validated on some of the most powerful supercomputers globally. However, getting started doesn't require access to a large cluster; Dask includes schedulers tailored for personal computing environments. Many individuals currently utilize Dask to enhance computations on their laptops, taking advantage of multiple processing cores and utilizing disk space for additional storage. Furthermore, Dask provides lower-level APIs that enable the creation of customized systems for internal applications. This functionality is particularly beneficial for open-source innovators looking to parallelize their own software packages, as well as business executives aiming to scale their unique business strategies efficiently. In essence, Dask serves as a versatile tool that bridges the gap between simple local computations and complex distributed processing.
API Access
Has API
API Access
Has API
Integrations
Google Cloud Platform
Acceldata
Agent3
Alation
Algoworks Task Manager
Anaconda
Ataccama ONE
Cloudera Data Platform
HPE Consumption Analytics
IRI CellShield
Integrations
Google Cloud Platform
Acceldata
Agent3
Alation
Algoworks Task Manager
Anaconda
Ataccama ONE
Cloudera Data Platform
HPE Consumption Analytics
IRI CellShield
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Cloudera
Founded
2008
Country
United States
Website
www.cloudera.com
Vendor Details
Company Name
Dask
Founded
2019
Website
dask.org
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Business Intelligence
Ad Hoc Reports
Benchmarking
Budgeting & Forecasting
Dashboard
Data Analysis
Key Performance Indicators
Natural Language Generation (NLG)
Performance Metrics
Predictive Analytics
Profitability Analysis
Strategic Planning
Trend / Problem Indicators
Visual Analytics
Data Management
Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports