Learn More

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 6 Ratings

Description

Experience robust data engineering processes free from the challenges of infrastructure management. By utilizing straightforward, modular Python, you can define intricate streaming, scheduling, and data backfill pipelines with ease. Transition from traditional ETL methods and access your data instantly, regardless of its complexity. Seamlessly blend deep learning and large language models with structured business datasets to enhance decision-making. Improve forecasting accuracy using up-to-date information, eliminate the costs associated with vendor data pre-fetching, and conduct timely queries for online predictions. Test your ideas in Jupyter notebooks before moving them to a live environment. Avoid discrepancies between training and serving data while developing new workflows in mere milliseconds. Monitor all of your data operations in real-time to effortlessly track usage and maintain data integrity. Have full visibility into everything you've processed and the ability to replay data as needed. Easily integrate with existing tools and deploy on your infrastructure, while setting and enforcing withdrawal limits with tailored hold periods. With such capabilities, you can not only enhance productivity but also ensure streamlined operations across your data ecosystem.

Description

Big Data Quality must always be verified to ensure that data is safe, accurate, and complete. Data is moved through multiple IT platforms or stored in Data Lakes. The Big Data Challenge: Data often loses its trustworthiness because of (i) Undiscovered errors in incoming data (iii). Multiple data sources that get out-of-synchrony over time (iii). Structural changes to data in downstream processes not expected downstream and (iv) multiple IT platforms (Hadoop DW, Cloud). Unexpected errors can occur when data moves between systems, such as from a Data Warehouse to a Hadoop environment, NoSQL database, or the Cloud. Data can change unexpectedly due to poor processes, ad-hoc data policies, poor data storage and control, and lack of control over certain data sources (e.g., external providers). DataBuck is an autonomous, self-learning, Big Data Quality validation tool and Data Matching tool.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon S3
Amazon Web Services (AWS)
Apache Airflow
Google Cloud BigQuery
Google Cloud Platform
PostgreSQL
Snowflake
AWS Glue
Amazon Redshift
Azure Cosmos DB
Cloudera
Datadog
GraphQL
Jupyter Notebook
Melio
MySQL
Pipe
Python
Ramp Network
Rust

Integrations

Amazon S3
Amazon Web Services (AWS)
Apache Airflow
Google Cloud BigQuery
Google Cloud Platform
PostgreSQL
Snowflake
AWS Glue
Amazon Redshift
Azure Cosmos DB
Cloudera
Datadog
GraphQL
Jupyter Notebook
Melio
MySQL
Pipe
Python
Ramp Network
Rust

Pricing Details

Free
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Chalk

Country

United States

Website

www.chalk.ai/

Vendor Details

Company Name

FirstEigen

Founded

2015

Country

United States

Website

firsteigen.com/databuck/

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Big Data

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Data Governance

Access Control
Data Discovery
Data Mapping
Data Profiling
Deletion Management
Email Management
Policy Management
Process Management
Roles Management
Storage Management

Data Management

Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge

Data Quality

Address Validation
Data Deduplication
Data Discovery
Data Profililng
Master Data Management
Match & Merge
Metadata Management

Alternatives

Alternatives

Feast Reviews

Feast

Tecton
datuum.ai Reviews

datuum.ai

Datuum
datuum.ai Reviews

datuum.ai

Datuum