Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Centific has developed a cutting-edge AI data foundry platform that utilizes NVIDIA edge computing to enhance AI implementation by providing greater flexibility, security, and scalability through an all-encompassing workflow orchestration system. This platform integrates AI project oversight into a singular AI Workbench, which manages the entire process from pipelines and model training to deployment and reporting in a cohesive setting, while also addressing data ingestion, preprocessing, and transformation needs. Additionally, RAG Studio streamlines retrieval-augmented generation workflows, the Product Catalog efficiently organizes reusable components, and Safe AI Studio incorporates integrated safeguards to ensure regulatory compliance, minimize hallucinations, and safeguard sensitive information. Featuring a plugin-based modular design, it accommodates both PaaS and SaaS models with consumption monitoring capabilities, while a centralized model catalog provides version control, compliance assessments, and adaptable deployment alternatives. The combination of these features positions Centific's platform as a versatile and robust solution for modern AI challenges.
Description
Distributed AI represents a computing approach that eliminates the necessity of transferring large data sets, enabling data analysis directly at its origin. Developed by IBM Research, the Distributed AI APIs consist of a suite of RESTful web services equipped with data and AI algorithms tailored for AI applications in hybrid cloud, edge, and distributed computing scenarios. Each API within the Distributed AI framework tackles the unique challenges associated with deploying AI technologies in such environments. Notably, these APIs do not concentrate on fundamental aspects of establishing and implementing AI workflows, such as model training or serving. Instead, developers can utilize their preferred open-source libraries like TensorFlow or PyTorch for these tasks. Afterward, you can encapsulate your application, which includes the entire AI pipeline, into containers for deployment at various distributed sites. Additionally, leveraging container orchestration tools like Kubernetes or OpenShift can greatly enhance the automation of the deployment process, ensuring efficiency and scalability in managing distributed AI applications. This innovative approach ultimately streamlines the integration of AI into diverse infrastructures, fostering smarter solutions.
API Access
Has API
API Access
Has API
Integrations
Amazon Web Services (AWS)
Google Cloud Platform
Hugging Face
Kubernetes
Microsoft Azure
NVIDIA DRIVE
OpenAI
PyTorch
Red Hat OpenShift
TensorFlow
Integrations
Amazon Web Services (AWS)
Google Cloud Platform
Hugging Face
Kubernetes
Microsoft Azure
NVIDIA DRIVE
OpenAI
PyTorch
Red Hat OpenShift
TensorFlow
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Centific
Country
United States
Website
centific.com
Vendor Details
Company Name
IBM
Country
United States
Website
developer.ibm.com/apis/catalog/edgeai--distributed-ai-apis/Introduction/
Product Features
Data Labeling
Human-in-the-loop
Labeling Automation
Labeling Quality
Performance Tracking
Polygon, Rectangle, Line, Point
SDK
Supports Audio Files
Task Management
Team Collaboration
Training Data Management