Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

BrainAPI serves as the essential memory layer for artificial intelligence, addressing the significant issue of forgetfulness in large language models that often lose context, fail to retain user preferences across different platforms, and struggle under information overload. This innovative solution features a universal and secure memory storage system that seamlessly integrates with various models like ChatGPT, Claude, and LLaMA. Envision it as a Google Drive specifically for memories, where facts, preferences, and knowledge can be retrieved in approximately 0.55 seconds through just a few lines of code. In contrast to proprietary services that lock users in, BrainAPI empowers both developers and users by granting them complete control over their data storage and security measures, employing future-proof encryption to ensure that only the user possesses the access key. This tool is not only easy to implement but also designed for a future where artificial intelligence can truly retain information, making it a vital resource for enhancing AI capabilities. Ultimately, BrainAPI represents a leap forward in achieving reliable memory functions for AI systems.

Description

GPUs excel at swiftly transferring data but suffer from limited locality of reference due to their relatively small caches, which makes them better suited for scenarios that involve heavy computation on small datasets rather than light computation on large ones. Consequently, the networks optimized for GPU architecture tend to run in layers sequentially to maximize the throughput of their computational pipelines (as illustrated in Figure 1 below). To accommodate larger models, given the GPUs' restricted memory capacity of only tens of gigabytes, multiple GPUs are often pooled together, leading to the distribution of models across these units and resulting in a convoluted software framework that must navigate the intricacies of communication and synchronization between different machines. In contrast, CPUs possess significantly larger and faster caches, along with access to extensive memory resources that can reach terabytes, allowing a typical CPU server to hold memory equivalent to that of dozens or even hundreds of GPUs. This makes CPUs particularly well-suited for a brain-like machine learning environment, where only specific portions of a vast network are activated as needed, offering a more flexible and efficient approach to processing. By leveraging the strengths of CPUs, machine learning systems can operate more smoothly, accommodating the demands of complex models while minimizing overhead.

API Access

Has API

API Access

Has API

Screenshots View All

No images available

Screenshots View All

Integrations

JavaScript
Python
TypeScript
Ultralytics

Integrations

JavaScript
Python
TypeScript
Ultralytics

Pricing Details

$0
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Lumen Platforms Inc.

Founded

2025

Country

United States

Website

brainapi.lumen-labs.ai/

Vendor Details

Company Name

Neural Magic

Founded

2018

Country

United States

Website

neuralmagic.com

Product Features

Product Features

Artificial Intelligence

Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Papr Reviews

Papr

Papr.ai
Neural Designer Reviews

Neural Designer

Artelnics