Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
BrainAPI serves as the essential memory layer for artificial intelligence, addressing the significant issue of forgetfulness in large language models that often lose context, fail to retain user preferences across different platforms, and struggle under information overload. This innovative solution features a universal and secure memory storage system that seamlessly integrates with various models like ChatGPT, Claude, and LLaMA. Envision it as a Google Drive specifically for memories, where facts, preferences, and knowledge can be retrieved in approximately 0.55 seconds through just a few lines of code. In contrast to proprietary services that lock users in, BrainAPI empowers both developers and users by granting them complete control over their data storage and security measures, employing future-proof encryption to ensure that only the user possesses the access key. This tool is not only easy to implement but also designed for a future where artificial intelligence can truly retain information, making it a vital resource for enhancing AI capabilities. Ultimately, BrainAPI represents a leap forward in achieving reliable memory functions for AI systems.
Description
GPUs excel at swiftly transferring data but suffer from limited locality of reference due to their relatively small caches, which makes them better suited for scenarios that involve heavy computation on small datasets rather than light computation on large ones. Consequently, the networks optimized for GPU architecture tend to run in layers sequentially to maximize the throughput of their computational pipelines (as illustrated in Figure 1 below). To accommodate larger models, given the GPUs' restricted memory capacity of only tens of gigabytes, multiple GPUs are often pooled together, leading to the distribution of models across these units and resulting in a convoluted software framework that must navigate the intricacies of communication and synchronization between different machines. In contrast, CPUs possess significantly larger and faster caches, along with access to extensive memory resources that can reach terabytes, allowing a typical CPU server to hold memory equivalent to that of dozens or even hundreds of GPUs. This makes CPUs particularly well-suited for a brain-like machine learning environment, where only specific portions of a vast network are activated as needed, offering a more flexible and efficient approach to processing. By leveraging the strengths of CPUs, machine learning systems can operate more smoothly, accommodating the demands of complex models while minimizing overhead.
API Access
Has API
API Access
Has API
Screenshots View All
No images available
Pricing Details
$0
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Lumen Platforms Inc.
Founded
2025
Country
United States
Website
brainapi.lumen-labs.ai/
Vendor Details
Company Name
Neural Magic
Founded
2018
Country
United States
Website
neuralmagic.com
Product Features
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Deep Learning
Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization