Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
A comprehensive platform for enterprise-level large models, offering an advanced toolchain for the development of generative AI production and application processes. This platform includes services for data labeling, model training, evaluation, and reasoning, as well as a full suite of integrated functional services tailored for applications. The performance in training and reasoning has seen significant enhancements. It features a robust authentication and flow control safety mechanism, alongside self-proclaimed content review and sensitive word filtering, ensuring a multi-layered safety approach for enterprise applications. With extensive and mature practical implementations, it paves the way for the next generation of intelligent applications. The platform also offers a rapid online testing service, enhancing the convenience of smart cloud reasoning capabilities. Users benefit from one-stop model customization and fully visualized operations throughout the entire process. The large model facilitates knowledge enhancement and employs a unified framework to support a variety of downstream tasks. Additionally, an advanced parallel strategy is in place to enable efficient large model training, compression, and deployment, ensuring adaptability in a fast-evolving technological landscape. This comprehensive offering positions enterprises to leverage AI in innovative and effective ways.
Description
Distributed AI represents a computing approach that eliminates the necessity of transferring large data sets, enabling data analysis directly at its origin. Developed by IBM Research, the Distributed AI APIs consist of a suite of RESTful web services equipped with data and AI algorithms tailored for AI applications in hybrid cloud, edge, and distributed computing scenarios. Each API within the Distributed AI framework tackles the unique challenges associated with deploying AI technologies in such environments. Notably, these APIs do not concentrate on fundamental aspects of establishing and implementing AI workflows, such as model training or serving. Instead, developers can utilize their preferred open-source libraries like TensorFlow or PyTorch for these tasks. Afterward, you can encapsulate your application, which includes the entire AI pipeline, into containers for deployment at various distributed sites. Additionally, leveraging container orchestration tools like Kubernetes or OpenShift can greatly enhance the automation of the deployment process, ensuring efficiency and scalability in managing distributed AI applications. This innovative approach ultimately streamlines the integration of AI into diverse infrastructures, fostering smarter solutions.
API Access
Has API
API Access
Has API
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Baidu
Country
China
Website
cloud.baidu.com/product/wenxinworkshop
Vendor Details
Company Name
IBM
Country
United States
Website
developer.ibm.com/apis/catalog/edgeai--distributed-ai-apis/Introduction/
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)