Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Enhance the precision of your machine learning models by leveraging publicly accessible datasets. Streamline the process of data discovery and preparation with curated datasets that are not only readily available for machine learning applications but also easily integrable through Azure services. It is essential to consider real-world factors that could influence business performance. By integrating features from these curated datasets into your machine learning models, you can significantly boost the accuracy of your predictions while minimizing the time spent on data preparation. Collaborate and share datasets with an expanding network of data scientists and developers. Utilize Azure Open Datasets alongside Azure’s machine learning and data analytics solutions to generate insights at an unprecedented scale. Most Open Datasets come at no extra cost, allowing you to pay solely for the Azure services utilized, including virtual machine instances, storage, networking, and machine learning resources. This curated open data is designed for seamless access on Azure, empowering users to focus on innovation and analysis. In this way, organizations can unlock new opportunities and drive informed decision-making.
Description
dstack simplifies GPU infrastructure management for machine learning teams by offering a single orchestration layer across multiple environments. Its declarative, container-native interface allows teams to manage clusters, development environments, and distributed tasks without deep DevOps expertise. The platform integrates natively with leading GPU cloud providers to provision and manage VM clusters while also supporting on-prem clusters through Kubernetes or SSH fleets. Developers can connect their desktop IDEs to powerful GPUs, enabling faster experimentation, debugging, and iteration. dstack ensures that scaling from single-instance workloads to multi-node distributed training is seamless, with efficient scheduling to maximize GPU utilization. For deployment, it supports secure, auto-scaling endpoints using custom code and Docker images, making model serving simple and flexible. Customers like Electronic Arts, Mobius Labs, and Argilla praise dstack for accelerating research while lowering costs and reducing infrastructure overhead. Whether for rapid prototyping or production workloads, dstack provides a unified, cost-efficient solution for AI development and deployment.
API Access
Has API
API Access
Has API
Integrations
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud Platform
Python
Integrations
Microsoft Azure
Amazon Web Services (AWS)
Google Cloud Platform
Python
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Microsoft
Founded
1975
Country
United States
Website
azure.microsoft.com/en-us/products/open-datasets/
Vendor Details
Company Name
dstack
Founded
2022
Country
Germany
Website
dstack.ai/
Product Features
Data Management
Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge