Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Asimov serves as a fundamental platform for AI-search and vector-search, allowing developers to upload various content sources such as documents and logs, which it then automatically chunks and embeds, making them accessible through a single API for enhanced semantic search, filtering, and relevance for AI applications. By streamlining the management of vector databases, embedding pipelines, and re-ranking systems, it simplifies the process of ingestion, metadata parameterization, usage monitoring, and retrieval within a cohesive framework. With features that support content addition through a REST API and the capability to conduct semantic searches with tailored filtering options, Asimov empowers teams to create extensive search functionalities with minimal infrastructure requirements. The platform efficiently manages metadata, automates chunking, handles embedding, and facilitates storage solutions like MongoDB, while also offering user-friendly tools such as a dashboard, usage analytics, and smooth integration capabilities. Furthermore, its all-in-one approach eliminates the complexities of traditional search systems, making it an indispensable tool for developers aiming to enhance their applications with advanced search capabilities.
Description
Enhance your embedding metadata and tokens through an intuitive user interface. By employing sophisticated NLP cleansing methods such as TF-IDF, you can normalize and enrich your embedding tokens, which significantly boosts both efficiency and accuracy in applications related to large language models. Furthermore, optimize the pertinence of the content retrieved from a vector database by intelligently managing the structure of the content, whether by splitting or merging, and incorporating void or hidden tokens to ensure that the chunks remain semantically coherent. With Embedditor, you gain complete command over your data, allowing for seamless deployment on your personal computer, within your dedicated enterprise cloud, or in an on-premises setup. By utilizing Embedditor's advanced cleansing features to eliminate irrelevant embedding tokens such as stop words, punctuation, and frequently occurring low-relevance terms, you have the potential to reduce embedding and vector storage costs by up to 40%, all while enhancing the quality of your search results. This innovative approach not only streamlines your workflow but also optimizes the overall performance of your NLP projects.
API Access
Has API
API Access
Has API
Pricing Details
$20 per month
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Asimov
Country
United States
Website
www.asimov.mov/
Vendor Details
Company Name
Embedditor
Website
embedditor.ai/