Average Ratings 0 Ratings
Average Ratings 0 Ratings
Average Ratings 1,394 Ratings
Description
Iceberg is an advanced format designed for managing extensive analytical tables efficiently. It combines the dependability and ease of SQL tables with the capabilities required for big data, enabling multiple engines such as Spark, Trino, Flink, Presto, Hive, and Impala to access and manipulate the same tables concurrently without issues. The format allows for versatile SQL operations to incorporate new data, modify existing records, and execute precise deletions. Additionally, Iceberg can optimize read performance by eagerly rewriting data files or utilize delete deltas to facilitate quicker updates. It also streamlines the complex and often error-prone process of generating partition values for table rows while automatically bypassing unnecessary partitions and files. Fast queries do not require extra filtering, and the structure of the table can be adjusted dynamically as data and query patterns evolve, ensuring efficiency and adaptability in data management. This adaptability makes Iceberg an essential tool in modern data workflows.
Description
Parquet was developed to provide the benefits of efficient, compressed columnar data representation to all projects within the Hadoop ecosystem. Designed with a focus on accommodating complex nested data structures, Parquet employs the record shredding and assembly technique outlined in the Dremel paper, which we consider to be a more effective strategy than merely flattening nested namespaces. This format supports highly efficient compression and encoding methods, and various projects have shown the significant performance improvements that arise from utilizing appropriate compression and encoding strategies for their datasets. Furthermore, Parquet enables the specification of compression schemes at the column level, ensuring its adaptability for future developments in encoding technologies. It is crafted to be accessible for any user, as the Hadoop ecosystem comprises a diverse range of data processing frameworks, and we aim to remain neutral in our support for these different initiatives. Ultimately, our goal is to empower users with a flexible and robust tool that enhances their data management capabilities across various applications.
Description
Snowflake is a cloud-native data platform that combines data warehousing, data lakes, and data sharing into a single solution. By offering elastic scalability and automatic scaling, Snowflake enables businesses to handle vast amounts of data while maintaining high performance at low cost. The platform's architecture allows users to separate storage and compute, offering flexibility in managing workloads. Snowflake supports real-time data sharing and integrates seamlessly with other analytics tools, enabling teams to collaborate and gain insights from their data more efficiently. Its secure, multi-cloud architecture makes it a strong choice for enterprises looking to leverage data at scale.
API Access
Has API
API Access
Has API
API Access
Has API
Integrations
Amazon Data Firehose
PuppyGraph
Streamkap
SQL
CSViewer
Cased
Coalesce
Composio
Defog
FlashDocs
Integrations
Amazon Data Firehose
PuppyGraph
Streamkap
SQL
CSViewer
Cased
Coalesce
Composio
Defog
FlashDocs
Integrations
Amazon Data Firehose
PuppyGraph
Streamkap
SQL
CSViewer
Cased
Coalesce
Composio
Defog
FlashDocs
Pricing Details
Free
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
$2 compute/month
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Apache Software Foundation
Founded
1999
Country
United States
Website
iceberg.apache.org
Vendor Details
Company Name
The Apache Software Foundation
Founded
1999
Country
United States
Website
parquet.apache.org
Vendor Details
Company Name
Snowflake
Founded
2012
Country
United States
Website
www.snowflake.com
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Product Features
Product Features
Big Data
Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates
Data Governance
Access Control
Data Discovery
Data Mapping
Data Profiling
Deletion Management
Email Management
Policy Management
Process Management
Roles Management
Storage Management
Data Management
Customer Data
Data Analysis
Data Capture
Data Integration
Data Migration
Data Quality Control
Data Security
Information Governance
Master Data Management
Match & Merge
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
Data Science
Access Control
Advanced Modeling
Audit Logs
Data Discovery
Data Ingestion
Data Preparation
Data Visualization
Model Deployment
Reports
Data Warehouse
Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge
Database
Backup and Recovery
Creation / Development
Data Migration
Data Replication
Data Search
Data Security
Database Conversion
Mobile Access
Monitoring
NOSQL
Performance Analysis
Queries
Relational Interface
Virtualization
ETL
Data Analysis
Data Filtering
Data Quality Control
Job Scheduling
Match & Merge
Metadata Management
Non-Relational Transformations
Version Control
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization