Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon SageMaker Studio serves as a comprehensive integrated development environment (IDE) that offers a unified web-based visual platform, equipping users with specialized tools essential for every phase of machine learning (ML) development, ranging from data preparation to the creation, training, and deployment of ML models, significantly enhancing the productivity of data science teams by as much as 10 times. Users can effortlessly upload datasets, initiate new notebooks, and engage in model training and tuning while easily navigating between different development stages to refine their experiments. Collaboration within organizations is facilitated, and the deployment of models into production can be accomplished seamlessly without leaving the interface of SageMaker Studio. This platform allows for the complete execution of the ML lifecycle, from handling unprocessed data to overseeing the deployment and monitoring of ML models, all accessible through a single, extensive set of tools presented in a web-based visual format. Users can swiftly transition between various steps in the ML process to optimize their models, while also having the ability to replay training experiments, adjust model features, and compare outcomes, ensuring a fluid workflow within SageMaker Studio for enhanced efficiency. In essence, SageMaker Studio not only streamlines the ML development process but also fosters an environment conducive to collaborative innovation and rigorous experimentation.
Amazon SageMaker Unified Studio provides a seamless and integrated environment for data teams to manage AI and machine learning projects from start to finish. It combines the power of AWS’s analytics tools—like Amazon Athena, Redshift, and Glue—with machine learning workflows.
Description
The Grace Enterprise AI Platform stands out as a comprehensive solution that fully addresses Governance, Risk & Compliance (GRC) considerations for AI. By providing a streamlined, secure, and effective implementation of AI technologies, Grace ensures that organizations can standardize their processes and workflows across all AI initiatives. It encompasses a complete suite of features necessary for organizations to achieve AI proficiency while safeguarding against regulatory challenges that could hinder AI deployment. The platform effectively reduces barriers to AI access for users in various roles, such as technical staff, IT professionals, project managers, and compliance officers, while still catering to the needs of seasoned data scientists and engineers with optimized workflows. Additionally, Grace guarantees that all activities are meticulously documented, justified, and enforced, covering every aspect of data science model development, including the data utilized for training, potential model biases, and beyond. This holistic approach reinforces the platform's commitment to fostering a culture of accountability and regulatory adherence in AI operations.
API Access
Has API
API Access
Has API
Integrations
Amazon Web Services (AWS)
AWS Glue
Amazon EMR
Amazon SageMaker
Amazon SageMaker Data Wrangler
Amazon SageMaker Debugger
Google Cloud Platform
Jupyter Notebook
Microsoft Azure
OpenShift Cloud Functions
Integrations
Amazon Web Services (AWS)
AWS Glue
Amazon EMR
Amazon SageMaker
Amazon SageMaker Data Wrangler
Amazon SageMaker Debugger
Google Cloud Platform
Jupyter Notebook
Microsoft Azure
OpenShift Cloud Functions
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/studio/
Vendor Details
Company Name
2021.AI
Founded
2016
Country
Denmark
Website
2021.ai/offerings/grace-enterprise-ai-platform/
Product Features
IDE
Code Completion
Compiler
Cross Platform Support
Debugger
Drag and Drop UI
Integrations and Plugins
Multi Language Support
Project Management
Text Editor / Code Editor
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Artificial Intelligence
Chatbot
For Healthcare
For Sales
For eCommerce
Image Recognition
Machine Learning
Multi-Language
Natural Language Processing
Predictive Analytics
Process/Workflow Automation
Rules-Based Automation
Virtual Personal Assistant (VPA)
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization