Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

With Amazon SageMaker Pipelines, you can effortlessly develop machine learning workflows using a user-friendly Python SDK, while also managing and visualizing your workflows in Amazon SageMaker Studio. By reusing and storing the steps you create within SageMaker Pipelines, you can enhance efficiency and accelerate scaling. Furthermore, built-in templates allow for rapid initiation, enabling you to build, test, register, and deploy models swiftly, thereby facilitating a CI/CD approach in your machine learning setup. Many users manage numerous workflows, often with various versions of the same model. The SageMaker Pipelines model registry provides a centralized repository to monitor these versions, simplifying the selection of the ideal model for deployment according to your organizational needs. Additionally, SageMaker Studio offers features to explore and discover models, and you can also access them via the SageMaker Python SDK, ensuring versatility in model management. This integration fosters a streamlined process for iterating on models and experimenting with new techniques, ultimately driving innovation in your machine learning projects.

Description

Amazon SageMaker Studio serves as a comprehensive integrated development environment (IDE) that offers a unified web-based visual platform, equipping users with specialized tools essential for every phase of machine learning (ML) development, ranging from data preparation to the creation, training, and deployment of ML models, significantly enhancing the productivity of data science teams by as much as 10 times. Users can effortlessly upload datasets, initiate new notebooks, and engage in model training and tuning while easily navigating between different development stages to refine their experiments. Collaboration within organizations is facilitated, and the deployment of models into production can be accomplished seamlessly without leaving the interface of SageMaker Studio. This platform allows for the complete execution of the ML lifecycle, from handling unprocessed data to overseeing the deployment and monitoring of ML models, all accessible through a single, extensive set of tools presented in a web-based visual format. Users can swiftly transition between various steps in the ML process to optimize their models, while also having the ability to replay training experiments, adjust model features, and compare outcomes, ensuring a fluid workflow within SageMaker Studio for enhanced efficiency. In essence, SageMaker Studio not only streamlines the ML development process but also fosters an environment conducive to collaborative innovation and rigorous experimentation. Amazon SageMaker Unified Studio provides a seamless and integrated environment for data teams to manage AI and machine learning projects from start to finish. It combines the power of AWS’s analytics tools—like Amazon Athena, Redshift, and Glue—with machine learning workflows.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon SageMaker
Amazon Web Services (AWS)
AWS Glue
Amazon EMR
Amazon SageMaker Data Wrangler
Amazon SageMaker Debugger
Jupyter Notebook
PyTorch
TensorFlow

Integrations

Amazon SageMaker
Amazon Web Services (AWS)
AWS Glue
Amazon EMR
Amazon SageMaker Data Wrangler
Amazon SageMaker Debugger
Jupyter Notebook
PyTorch
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

2006

Country

United States

Website

aws.amazon.com/sagemaker/pipelines/

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/sagemaker/studio/

Product Features

Continuous Delivery

Application Lifecycle Management
Application Release Automation
Build Automation
Build Log
Change Management
Configuration Management
Continuous Deployment
Continuous Integration
Feature Toggles / Feature Flags
Quality Management
Testing Management

Continuous Integration

Build Log
Change Management
Configuration Management
Continuous Delivery
Continuous Deployment
Debugging
Permission Management
Quality Assurance Management
Testing Management

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

IDE

Code Completion
Compiler
Cross Platform Support
Debugger
Drag and Drop UI
Integrations and Plugins
Multi Language Support
Project Management
Text Editor / Code Editor

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives