Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon SageMaker Data Wrangler significantly shortens the data aggregation and preparation timeline for machine learning tasks from several weeks to just minutes. This tool streamlines data preparation and feature engineering, allowing you to execute every phase of the data preparation process—such as data selection, cleansing, exploration, visualization, and large-scale processing—through a unified visual interface. You can effortlessly select data from diverse sources using SQL, enabling rapid imports. Following this, the Data Quality and Insights report serves to automatically assess data integrity and identify issues like duplicate entries and target leakage. With over 300 pre-built data transformations available, SageMaker Data Wrangler allows for quick data modification without the need for coding. After finalizing your data preparation, you can scale the workflow to encompass your complete datasets, facilitating model training, tuning, and deployment in a seamless manner. This comprehensive approach not only enhances efficiency but also empowers users to focus on deriving insights from their data rather than getting bogged down in the preparation phase.

Description

With Amazon SageMaker Pipelines, you can effortlessly develop machine learning workflows using a user-friendly Python SDK, while also managing and visualizing your workflows in Amazon SageMaker Studio. By reusing and storing the steps you create within SageMaker Pipelines, you can enhance efficiency and accelerate scaling. Furthermore, built-in templates allow for rapid initiation, enabling you to build, test, register, and deploy models swiftly, thereby facilitating a CI/CD approach in your machine learning setup. Many users manage numerous workflows, often with various versions of the same model. The SageMaker Pipelines model registry provides a centralized repository to monitor these versions, simplifying the selection of the ideal model for deployment according to your organizational needs. Additionally, SageMaker Studio offers features to explore and discover models, and you can also access them via the SageMaker Python SDK, ensuring versatility in model management. This integration fosters a streamlined process for iterating on models and experimenting with new techniques, ultimately driving innovation in your machine learning projects.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon SageMaker
Amazon Web Services (AWS)
Amazon Athena
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Amazon SageMaker Studio
Amazon SageMaker Unified Studio
Apache Parquet
Apache Spark
Databricks Data Intelligence Platform
Facebook Ads
Google Analytics
JSON
PySpark
SAP Cloud Platform
Salesforce
Snowflake
pandas

Integrations

Amazon SageMaker
Amazon Web Services (AWS)
Amazon Athena
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Amazon SageMaker Studio
Amazon SageMaker Unified Studio
Apache Parquet
Apache Spark
Databricks Data Intelligence Platform
Facebook Ads
Google Analytics
JSON
PySpark
SAP Cloud Platform
Salesforce
Snowflake
pandas

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/sagemaker/data-wrangler/

Vendor Details

Company Name

Amazon

Founded

2006

Country

United States

Website

aws.amazon.com/sagemaker/pipelines/

Product Features

Data Preparation

Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Continuous Delivery

Application Lifecycle Management
Application Release Automation
Build Automation
Build Log
Change Management
Configuration Management
Continuous Deployment
Continuous Integration
Feature Toggles / Feature Flags
Quality Management
Testing Management

Continuous Integration

Build Log
Change Management
Configuration Management
Continuous Delivery
Continuous Deployment
Debugging
Permission Management
Quality Assurance Management
Testing Management

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives