Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon SageMaker Data Wrangler significantly shortens the data aggregation and preparation timeline for machine learning tasks from several weeks to just minutes. This tool streamlines data preparation and feature engineering, allowing you to execute every phase of the data preparation process—such as data selection, cleansing, exploration, visualization, and large-scale processing—through a unified visual interface. You can effortlessly select data from diverse sources using SQL, enabling rapid imports. Following this, the Data Quality and Insights report serves to automatically assess data integrity and identify issues like duplicate entries and target leakage. With over 300 pre-built data transformations available, SageMaker Data Wrangler allows for quick data modification without the need for coding. After finalizing your data preparation, you can scale the workflow to encompass your complete datasets, facilitating model training, tuning, and deployment in a seamless manner. This comprehensive approach not only enhances efficiency but also empowers users to focus on deriving insights from their data rather than getting bogged down in the preparation phase.
Description
With Amazon SageMaker Pipelines, you can effortlessly develop machine learning workflows using a user-friendly Python SDK, while also managing and visualizing your workflows in Amazon SageMaker Studio. By reusing and storing the steps you create within SageMaker Pipelines, you can enhance efficiency and accelerate scaling. Furthermore, built-in templates allow for rapid initiation, enabling you to build, test, register, and deploy models swiftly, thereby facilitating a CI/CD approach in your machine learning setup. Many users manage numerous workflows, often with various versions of the same model. The SageMaker Pipelines model registry provides a centralized repository to monitor these versions, simplifying the selection of the ideal model for deployment according to your organizational needs. Additionally, SageMaker Studio offers features to explore and discover models, and you can also access them via the SageMaker Python SDK, ensuring versatility in model management. This integration fosters a streamlined process for iterating on models and experimenting with new techniques, ultimately driving innovation in your machine learning projects.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Amazon Athena
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Amazon SageMaker Studio
Amazon SageMaker Unified Studio
Apache Parquet
Integrations
Amazon SageMaker
Amazon Web Services (AWS)
Amazon Athena
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Amazon SageMaker Studio
Amazon SageMaker Unified Studio
Apache Parquet
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/data-wrangler/
Vendor Details
Company Name
Amazon
Founded
2006
Country
United States
Website
aws.amazon.com/sagemaker/pipelines/
Product Features
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Continuous Delivery
Application Lifecycle Management
Application Release Automation
Build Automation
Build Log
Change Management
Configuration Management
Continuous Deployment
Continuous Integration
Feature Toggles / Feature Flags
Quality Management
Testing Management
Continuous Integration
Build Log
Change Management
Configuration Management
Continuous Delivery
Continuous Deployment
Debugging
Permission Management
Quality Assurance Management
Testing Management
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization