Average Ratings 0 Ratings
Average Ratings 0 Ratings
Description
Amazon SageMaker Canvas democratizes access to machine learning by equipping business analysts with an intuitive visual interface that enables them to independently create precise ML predictions without needing prior ML knowledge or coding skills. This user-friendly point-and-click interface facilitates the connection, preparation, analysis, and exploration of data, simplifying the process of constructing ML models and producing reliable predictions. Users can effortlessly build ML models to conduct what-if scenarios and generate both individual and bulk predictions with minimal effort. The platform enhances teamwork between business analysts and data scientists, allowing for the seamless sharing, reviewing, and updating of ML models across different tools. Additionally, users can import ML models from various sources and obtain predictions directly within Amazon SageMaker Canvas. With this tool, you can draw data from diverse origins, specify the outcomes you wish to forecast, and automatically prepare as well as examine your data, enabling a swift and straightforward model-building experience. Ultimately, this capability allows users to analyze their models and yield accurate predictions, fostering a more data-driven decision-making culture across organizations.
Description
Amazon SageMaker Data Wrangler significantly shortens the data aggregation and preparation timeline for machine learning tasks from several weeks to just minutes. This tool streamlines data preparation and feature engineering, allowing you to execute every phase of the data preparation process—such as data selection, cleansing, exploration, visualization, and large-scale processing—through a unified visual interface. You can effortlessly select data from diverse sources using SQL, enabling rapid imports. Following this, the Data Quality and Insights report serves to automatically assess data integrity and identify issues like duplicate entries and target leakage. With over 300 pre-built data transformations available, SageMaker Data Wrangler allows for quick data modification without the need for coding. After finalizing your data preparation, you can scale the workflow to encompass your complete datasets, facilitating model training, tuning, and deployment in a seamless manner. This comprehensive approach not only enhances efficiency but also empowers users to focus on deriving insights from their data rather than getting bogged down in the preparation phase.
API Access
Has API
API Access
Has API
Integrations
Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
Amazon Athena
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Amazon SageMaker Studio
Apache Parquet
Integrations
Amazon SageMaker
Amazon SageMaker Unified Studio
Amazon Web Services (AWS)
Amazon Athena
Amazon EMR
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Amazon SageMaker Studio
Apache Parquet
Pricing Details
No price information available.
Free Trial
Free Version
Pricing Details
No price information available.
Free Trial
Free Version
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Deployment
Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Customer Support
Business Hours
Live Rep (24/7)
Online Support
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Types of Training
Training Docs
Webinars
Live Training (Online)
In Person
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/canvas/
Vendor Details
Company Name
Amazon
Founded
1994
Country
United States
Website
aws.amazon.com/sagemaker/data-wrangler/
Product Features
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization
Product Features
Data Preparation
Collaboration Tools
Data Access
Data Blending
Data Cleansing
Data Governance
Data Mashup
Data Modeling
Data Transformation
Machine Learning
Visual User Interface
Machine Learning
Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization