Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon Elastic Inference provides an affordable way to enhance Amazon EC2 and Sagemaker instances or Amazon ECS tasks with GPU-powered acceleration, potentially cutting deep learning inference costs by as much as 75%. It is compatible with models built on TensorFlow, Apache MXNet, PyTorch, and ONNX. The term "inference" refers to the act of generating predictions from a trained model. In the realm of deep learning, inference can represent up to 90% of the total operational expenses, primarily for two reasons. Firstly, GPU instances are generally optimized for model training rather than inference, as training tasks can handle numerous data samples simultaneously, while inference typically involves processing one input at a time in real-time, resulting in minimal GPU usage. Consequently, relying solely on GPU instances for inference can lead to higher costs. Conversely, CPU instances lack the necessary specialization for matrix computations, making them inefficient and often too sluggish for deep learning inference tasks. This necessitates a solution like Elastic Inference, which optimally balances cost and performance in inference scenarios.

Description

Tensormesh serves as an innovative caching layer designed for inference tasks involving large language models, allowing organizations to capitalize on intermediate computations, significantly minimize GPU consumption, and enhance both time-to-first-token and overall latency. By capturing and repurposing essential key-value cache states that would typically be discarded after each inference, it eliminates unnecessary computational efforts and achieves “up to 10x faster inference,” all while substantially reducing the strain on GPUs. The platform is versatile, accommodating both public cloud and on-premises deployments, and offers comprehensive observability, enterprise-level control, as well as SDKs/APIs and dashboards for seamless integration into existing inference frameworks, boasting compatibility with inference engines like vLLM right out of the box. Tensormesh prioritizes high performance at scale, enabling sub-millisecond repeated queries, and fine-tunes every aspect of inference from caching to computation, ensuring that organizations can maximize efficiency and responsiveness in their applications. In an increasingly competitive landscape, such enhancements provide a critical edge for companies aiming to leverage advanced language models effectively.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon EC2
Amazon EC2 G4 Instances
Amazon Web Services (AWS)
MXNet
PyTorch
TensorFlow

Integrations

Amazon EC2
Amazon EC2 G4 Instances
Amazon Web Services (AWS)
MXNet
PyTorch
TensorFlow

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

2006

Country

United States

Website

aws.amazon.com/machine-learning/elastic-inference/

Vendor Details

Company Name

Tensormesh

Founded

2025

Country

United States

Website

www.tensormesh.ai/

Product Features

Infrastructure-as-a-Service (IaaS)

Analytics / Reporting
Configuration Management
Data Migration
Data Security
Load Balancing
Log Access
Network Monitoring
Performance Monitoring
SLA Monitoring

Product Features

Alternatives

Alternatives

AWS Neuron Reviews

AWS Neuron

Amazon Web Services