Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

Amazon EC2 P4d instances are designed for optimal performance in machine learning training and high-performance computing (HPC) applications within the cloud environment. Equipped with NVIDIA A100 Tensor Core GPUs, these instances provide exceptional throughput and low-latency networking capabilities, boasting 400 Gbps instance networking. P4d instances are remarkably cost-effective, offering up to a 60% reduction in expenses for training machine learning models, while also delivering an impressive 2.5 times better performance for deep learning tasks compared to the older P3 and P3dn models. They are deployed within expansive clusters known as Amazon EC2 UltraClusters, which allow for the seamless integration of high-performance computing, networking, and storage resources. This flexibility enables users to scale their operations from a handful to thousands of NVIDIA A100 GPUs depending on their specific project requirements. Researchers, data scientists, and developers can leverage P4d instances to train machine learning models for diverse applications, including natural language processing, object detection and classification, and recommendation systems, in addition to executing HPC tasks such as pharmaceutical discovery and other complex computations. These capabilities collectively empower teams to innovate and accelerate their projects with greater efficiency and effectiveness.

Description

Caffe is a deep learning framework designed with a focus on expressiveness, efficiency, and modularity, developed by Berkeley AI Research (BAIR) alongside numerous community contributors. The project was initiated by Yangqing Jia during his doctoral studies at UC Berkeley and is available under the BSD 2-Clause license. For those interested, there is an engaging web image classification demo available for viewing! The framework’s expressive architecture promotes innovation and application development. Users can define models and optimizations through configuration files without the need for hard-coded elements. By simply toggling a flag, users can seamlessly switch between CPU and GPU, allowing for training on powerful GPU machines followed by deployment on standard clusters or mobile devices. The extensible nature of Caffe's codebase supports ongoing development and enhancement. In its inaugural year, Caffe was forked by more than 1,000 developers, who contributed numerous significant changes back to the project. Thanks to these community contributions, the framework remains at the forefront of state-of-the-art code and models. Caffe's speed makes it an ideal choice for both research experiments and industrial applications, with the capability to process upwards of 60 million images daily using a single NVIDIA K40 GPU, demonstrating its robustness and efficacy in handling large-scale tasks. This performance ensures that users can rely on Caffe for both experimentation and deployment in various scenarios.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon Web Services (AWS)
AWS Deep Learning AMIs
AWS Nitro System
Activeeon ProActive
Amazon EC2
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Elastic Container Service (Amazon ECS)
Docker
Lambda
NVIDIA DIGITS
OpenVINO
Polyaxon
Pop!_OS
PyTorch
TensorFlow
Zebra by Mipsology

Integrations

Amazon Web Services (AWS)
AWS Deep Learning AMIs
AWS Nitro System
Activeeon ProActive
Amazon EC2
Amazon EC2 G5 Instances
Amazon EC2 Inf1 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon Elastic Container Service (Amazon ECS)
Docker
Lambda
NVIDIA DIGITS
OpenVINO
Polyaxon
Pop!_OS
PyTorch
TensorFlow
Zebra by Mipsology

Pricing Details

$11.57 per hour
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/ec2/instance-types/p4/

Vendor Details

Company Name

BAIR

Country

United States

Website

caffe.berkeleyvision.org

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

HPC

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

Alternatives

MXNet Reviews

MXNet

The Apache Software Foundation
DeepSpeed Reviews

DeepSpeed

Microsoft
Vertex AI Reviews

Vertex AI

Google