Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

It enables efficient training on Amazon Elastic Compute Cloud (Amazon EC2) Trn1 instances powered by AWS Trainium. Additionally, for model deployment, it facilitates both high-performance and low-latency inference utilizing AWS Inferentia-based Amazon EC2 Inf1 instances along with AWS Inferentia2-based Amazon EC2 Inf2 instances. With the Neuron SDK, users can leverage widely-used frameworks like TensorFlow and PyTorch to effectively train and deploy machine learning (ML) models on Amazon EC2 Trn1, Inf1, and Inf2 instances with minimal alterations to their code and no reliance on vendor-specific tools. The integration of the AWS Neuron SDK with these frameworks allows for seamless continuation of existing workflows, requiring only minor code adjustments to get started. For those involved in distributed model training, the Neuron SDK also accommodates libraries such as Megatron-LM and PyTorch Fully Sharded Data Parallel (FSDP), enhancing its versatility and scalability for various ML tasks. By providing robust support for these frameworks and libraries, it significantly streamlines the process of developing and deploying advanced machine learning solutions.

Description

Amazon SageMaker Feature Store serves as a comprehensive, fully managed repository specifically designed for the storage, sharing, and management of features utilized in machine learning (ML) models. Features represent the data inputs that are essential during both the training phase and inference process of ML models. For instance, in a music recommendation application, relevant features might encompass song ratings, listening times, and audience demographics. The importance of feature quality cannot be overstated, as it plays a vital role in achieving a model with high accuracy, and various teams often rely on these features repeatedly. Moreover, synchronizing features between offline batch training and real-time inference poses significant challenges. SageMaker Feature Store effectively addresses this issue by offering a secure and cohesive environment that supports feature utilization throughout the entire ML lifecycle. This platform enables users to store, share, and manage features for both training and inference, thereby facilitating their reuse across different ML applications. Additionally, it allows for the ingestion of features from a multitude of data sources, including both streaming and batch inputs such as application logs, service logs, clickstream data, and sensor readings, ensuring versatility and efficiency in feature management. Ultimately, SageMaker Feature Store enhances collaboration and improves model performance across various machine learning projects.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Amazon SageMaker
Amazon Web Services (AWS)
AWS Deep Learning AMIs
AWS Glue
AWS Lake Formation
AWS Trainium
Amazon Athena
Amazon EC2 Capacity Blocks for ML
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon EC2 UltraClusters
Amazon EKS
Amazon EKS Anywhere
Amazon Elastic Container Service (Amazon ECS)
Amazon Redshift
Amazon S3
Amazon SageMaker Data Wrangler
Apache Spark

Integrations

Amazon SageMaker
Amazon Web Services (AWS)
AWS Deep Learning AMIs
AWS Glue
AWS Lake Formation
AWS Trainium
Amazon Athena
Amazon EC2 Capacity Blocks for ML
Amazon EC2 P4 Instances
Amazon EC2 P5 Instances
Amazon EC2 Trn1 Instances
Amazon EC2 Trn2 Instances
Amazon EC2 UltraClusters
Amazon EKS
Amazon EKS Anywhere
Amazon Elastic Container Service (Amazon ECS)
Amazon Redshift
Amazon S3
Amazon SageMaker Data Wrangler
Apache Spark

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon Web Services

Founded

2006

Country

United States

Website

aws.amazon.com/machine-learning/neuron/

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/sagemaker/feature-store/

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives