Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

AWS Lake Formation is a service designed to streamline the creation of a secure data lake in just a matter of days. A data lake serves as a centralized, carefully organized, and protected repository that accommodates all data, maintaining both its raw and processed formats for analytical purposes. By utilizing a data lake, organizations can eliminate data silos and integrate various analytical approaches, leading to deeper insights and more informed business choices. However, the traditional process of establishing and maintaining data lakes is often burdened with labor-intensive, complex, and time-consuming tasks. This includes activities such as importing data from various sources, overseeing data flows, configuring partitions, enabling encryption and managing encryption keys, defining and monitoring transformation jobs, reorganizing data into a columnar structure, removing duplicate records, and linking related entries. After data is successfully loaded into the data lake, it is essential to implement precise access controls for datasets and continuously monitor access across a broad spectrum of analytics and machine learning tools and services. The comprehensive management of these tasks can significantly enhance the overall efficiency and security of data handling within an organization.

Description

Dremio provides lightning-fast queries as well as a self-service semantic layer directly to your data lake storage. No data moving to proprietary data warehouses, and no cubes, aggregation tables, or extracts. Data architects have flexibility and control, while data consumers have self-service. Apache Arrow and Dremio technologies such as Data Reflections, Columnar Cloud Cache(C3), and Predictive Pipelining combine to make it easy to query your data lake storage. An abstraction layer allows IT to apply security and business meaning while allowing analysts and data scientists access data to explore it and create new virtual datasets. Dremio's semantic layers is an integrated searchable catalog that indexes all your metadata so business users can make sense of your data. The semantic layer is made up of virtual datasets and spaces, which are all searchable and indexed.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

AWS App Mesh
Amazon DataZone
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Apache Iceberg
Apache Superset
Azure Marketplace
DashboardFox
Emgage
HPE Ezmeral
Microsoft Power BI
Microsoft Power Query
Protegrity
PuppyGraph
SQL
Velotix
Yurbi
data.world
witboost

Integrations

AWS App Mesh
Amazon DataZone
Amazon Redshift
Amazon S3
Amazon SageMaker Feature Store
Apache Iceberg
Apache Superset
Azure Marketplace
DashboardFox
Emgage
HPE Ezmeral
Microsoft Power BI
Microsoft Power Query
Protegrity
PuppyGraph
SQL
Velotix
Yurbi
data.world
witboost

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

Amazon

Founded

1994

Country

United States

Website

aws.amazon.com/lake-formation/

Vendor Details

Company Name

Dremio

Founded

2015

Country

United States

Website

www.dremio.com

Product Features

Product Features

Big Data

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Data Lineage

Database Change Impact Analysis
Filter Lineage Links
Implicit Connection Discovery
Lineage Object Filtering
Object Lineage Tracing
Point-in-Time Visibility
User/Client/Target Connection Visibility
Visual & Text Lineage View

Data Warehouse

Ad hoc Query
Analytics
Data Integration
Data Migration
Data Quality Control
ETL - Extract / Transfer / Load
In-Memory Processing
Match & Merge

Alternatives

Alternatives

Apache Drill Reviews

Apache Drill

The Apache Software Foundation
BigLake Reviews

BigLake

Google