Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

The ABEJA platform represents a groundbreaking AI solution that integrates state-of-the-art technologies, including IoT, Big Data, and Deep Learning. In 2013, the volume of data circulated reached 4.4 zettabytes, and this figure is projected to soar to 44 zettabytes by 2020. This raises critical questions about how we can efficiently gather and leverage such vast and varied data sets, as well as how we can extract new insights from them. The ABEJA Platform stands out as one of the most sophisticated AI technologies globally, addressing the increasingly complex technological challenges ahead by facilitating the effective use of diverse data types. It offers advanced capabilities for image analysis through Deep Learning and processes extensive data swiftly with its cutting-edge decentralized architecture. Furthermore, it employs Machine Learning and Deep Learning techniques to analyze the amassed data, making it straightforward to share analysis results across different systems via API. As the data landscape continues to evolve, the need for such innovative platforms becomes ever more critical.

Description

Deep learning frameworks like TensorFlow, PyTorch, Caffe, Torch, Theano, and MXNet have significantly enhanced the accessibility of deep learning by simplifying the design, training, and application of deep learning models. Fabric for Deep Learning (FfDL, pronounced “fiddle”) offers a standardized method for deploying these deep-learning frameworks as a service on Kubernetes, ensuring smooth operation. The architecture of FfDL is built on microservices, which minimizes the interdependence between components, promotes simplicity, and maintains a stateless nature for each component. This design choice also helps to isolate failures, allowing for independent development, testing, deployment, scaling, and upgrading of each element. By harnessing the capabilities of Kubernetes, FfDL delivers a highly scalable, resilient, and fault-tolerant environment for deep learning tasks. Additionally, the platform incorporates a distribution and orchestration layer that enables efficient learning from large datasets across multiple compute nodes within a manageable timeframe. This comprehensive approach ensures that deep learning projects can be executed with both efficiency and reliability.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Caffe
Kubernetes
PyTorch
TensorFlow
Torch

Integrations

Caffe
Kubernetes
PyTorch
TensorFlow
Torch

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

ABEJA

Founded

2012

Country

Japan

Website

abejainc.com/platform/en/

Vendor Details

Company Name

IBM

Founded

1911

Country

United States

Website

developer.ibm.com/open/projects/fabric-for-deep-learning-ffdl/

Product Features

Big Data

Collaboration
Data Blends
Data Cleansing
Data Mining
Data Visualization
Data Warehousing
High Volume Processing
No-Code Sandbox
Predictive Analytics
Templates

Data Analysis

Data Discovery
Data Visualization
High Volume Processing
Predictive Analytics
Regression Analysis
Sentiment Analysis
Statistical Modeling
Text Analytics

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Product Features

Deep Learning

Convolutional Neural Networks
Document Classification
Image Segmentation
ML Algorithm Library
Model Training
Neural Network Modeling
Self-Learning
Visualization

Alternatives

Alternatives

RapidMiner Reviews

RapidMiner

Altair
DataMelt Reviews

DataMelt

jWork.ORG
BIRD Analytics Reviews

BIRD Analytics

Lightning Insights
Apache Spark Reviews

Apache Spark

Apache Software Foundation