Best Big Data Platforms for Acryl Data

Find and compare the best Big Data platforms for Acryl Data in 2025

Use the comparison tool below to compare the top Big Data platforms for Acryl Data on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Google Cloud BigQuery Reviews

    Google Cloud BigQuery

    Google

    Free ($300 in free credits)
    1,730 Ratings
    See Platform
    Learn More
    BigQuery is specifically built to manage and analyze large-scale data, making it an excellent solution for companies dealing with extensive datasets. Whether you're working with gigabytes or petabytes of information, BigQuery's automatic scaling ensures optimal performance for queries, enhancing efficiency. This powerful tool allows organizations to process data at remarkable speeds, enabling them to remain competitive in rapidly evolving markets. New users can take advantage of $300 in complimentary credits to delve into BigQuery's capabilities, gaining hands-on experience in handling and analyzing substantial amounts of data. With its serverless design, BigQuery eliminates concerns about scaling, streamlining the management of big data like never before.
  • 2
    MongoDB Reviews
    Top Pick
    MongoDB is a versatile, document-oriented, distributed database designed specifically for contemporary application developers and the cloud landscape. It offers unparalleled productivity, enabling teams to ship and iterate products 3 to 5 times faster thanks to its adaptable document data model and a single query interface that caters to diverse needs. Regardless of whether you're serving your very first customer or managing 20 million users globally, you'll be able to meet your performance service level agreements in any setting. The platform simplifies high availability, safeguards data integrity, and adheres to the security and compliance requirements for your critical workloads. Additionally, it features a comprehensive suite of cloud database services that support a broad array of use cases, including transactional processing, analytics, search functionality, and data visualizations. Furthermore, you can easily deploy secure mobile applications with built-in edge-to-cloud synchronization and automatic resolution of conflicts. MongoDB's flexibility allows you to operate it in various environments, from personal laptops to extensive data centers, making it a highly adaptable solution for modern data management challenges.
  • 3
    Looker Reviews
    Top Pick
    Looker reinvents the way business intelligence (BI) works by delivering an entirely new kind of data discovery solution that modernizes BI in three important ways. A simplified web-based stack leverages our 100% in-database architecture, so customers can operate on big data and find the last mile of value in the new era of fast analytic databases. An agile development environment enables today’s data rockstars to model the data and create end-user experiences that make sense for each specific business, transforming data on the way out, rather than on the way in. At the same time, a self-service data-discovery experience works the way the web works, empowering business users to drill into and explore very large datasets without ever leaving the browser. As a result, Looker customers enjoy the power of traditional BI at the speed of the web.
  • 4
    Snowflake Reviews

    Snowflake

    Snowflake

    $2 compute/month
    4 Ratings
    Snowflake is a cloud-native data platform that combines data warehousing, data lakes, and data sharing into a single solution. By offering elastic scalability and automatic scaling, Snowflake enables businesses to handle vast amounts of data while maintaining high performance at low cost. The platform's architecture allows users to separate storage and compute, offering flexibility in managing workloads. Snowflake supports real-time data sharing and integrates seamlessly with other analytics tools, enabling teams to collaborate and gain insights from their data more efficiently. Its secure, multi-cloud architecture makes it a strong choice for enterprises looking to leverage data at scale.
  • 5
    Elasticsearch Reviews
    Elastic is a search company. Elasticsearch, Kibana Beats, Logstash, and Elasticsearch are the founders of the ElasticStack. These SaaS offerings allow data to be used in real-time and at scale for analytics, security, search, logging, security, and search. Elastic has over 100,000 members in 45 countries. Elastic's products have been downloaded more than 400 million times since their initial release. Today, thousands of organizations including Cisco, eBay and Dell, Goldman Sachs and Groupon, HP and Microsoft, as well as Netflix, Uber, Verizon and Yelp use Elastic Stack and Elastic Cloud to power mission critical systems that generate new revenue opportunities and huge cost savings. Elastic is headquartered in Amsterdam, The Netherlands and Mountain View, California. It has more than 1,000 employees in over 35 countries.
  • 6
    Apache Druid Reviews
    Apache Druid is a distributed data storage solution that is open source. Its fundamental architecture merges concepts from data warehouses, time series databases, and search technologies to deliver a high-performance analytics database capable of handling a diverse array of applications. By integrating the essential features from these three types of systems, Druid optimizes its ingestion process, storage method, querying capabilities, and overall structure. Each column is stored and compressed separately, allowing the system to access only the relevant columns for a specific query, which enhances speed for scans, rankings, and groupings. Additionally, Druid constructs inverted indexes for string data to facilitate rapid searching and filtering. It also includes pre-built connectors for various platforms such as Apache Kafka, HDFS, and AWS S3, as well as stream processors and others. The system adeptly partitions data over time, making queries based on time significantly quicker than those in conventional databases. Users can easily scale resources by simply adding or removing servers, and Druid will manage the rebalancing automatically. Furthermore, its fault-tolerant design ensures resilience by effectively navigating around any server malfunctions that may occur. This combination of features makes Druid a robust choice for organizations seeking efficient and reliable real-time data analytics solutions.
  • 7
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform empowers every member of your organization to leverage data and artificial intelligence effectively. Constructed on a lakehouse architecture, it establishes a cohesive and transparent foundation for all aspects of data management and governance, enhanced by a Data Intelligence Engine that recognizes the distinct characteristics of your data. Companies that excel across various sectors will be those that harness the power of data and AI. Covering everything from ETL processes to data warehousing and generative AI, Databricks facilitates the streamlining and acceleration of your data and AI objectives. By merging generative AI with the integrative advantages of a lakehouse, Databricks fuels a Data Intelligence Engine that comprehends the specific semantics of your data. This functionality enables the platform to optimize performance automatically and manage infrastructure in a manner tailored to your organization's needs. Additionally, the Data Intelligence Engine is designed to grasp the unique language of your enterprise, making the search and exploration of new data as straightforward as posing a question to a colleague, thus fostering collaboration and efficiency. Ultimately, this innovative approach transforms the way organizations interact with their data, driving better decision-making and insights.
  • 8
    SAP HANA Reviews
    SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive.
  • 9
    Vertica Reviews
    The Unified Analytics Warehouse. The Unified Analytics Warehouse is the best place to find high-performing analytics and machine learning at large scale. Tech research analysts are seeing new leaders as they strive to deliver game-changing big data analytics. Vertica empowers data-driven companies so they can make the most of their analytics initiatives. It offers advanced time-series, geospatial, and machine learning capabilities, as well as data lake integration, user-definable extensions, cloud-optimized architecture and more. Vertica's Under the Hood webcast series allows you to dive into the features of Vertica - delivered by Vertica engineers, technical experts, and others - and discover what makes it the most scalable and scalable advanced analytical data database on the market. Vertica supports the most data-driven disruptors around the globe in their pursuit for industry and business transformation.
  • 10
    Delta Lake Reviews
    Delta Lake serves as an open-source storage layer that integrates ACID transactions into Apache Spark™ and big data operations. In typical data lakes, multiple pipelines operate simultaneously to read and write data, which often forces data engineers to engage in a complex and time-consuming effort to maintain data integrity because transactional capabilities are absent. By incorporating ACID transactions, Delta Lake enhances data lakes and ensures a high level of consistency with its serializability feature, the most robust isolation level available. For further insights, refer to Diving into Delta Lake: Unpacking the Transaction Log. In the realm of big data, even metadata can reach substantial sizes, and Delta Lake manages metadata with the same significance as the actual data, utilizing Spark's distributed processing strengths for efficient handling. Consequently, Delta Lake is capable of managing massive tables that can scale to petabytes, containing billions of partitions and files without difficulty. Additionally, Delta Lake offers data snapshots, which allow developers to retrieve and revert to previous data versions, facilitating audits, rollbacks, or the replication of experiments while ensuring data reliability and consistency across the board.
  • Previous
  • You're on page 1
  • Next