Best Application Development Software for Amazon SageMaker Model Building

Find and compare the best Application Development software for Amazon SageMaker Model Building in 2025

Use the comparison tool below to compare the top Application Development software for Amazon SageMaker Model Building on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Docker Reviews
    Docker streamlines tedious configuration processes and is utilized across the entire development lifecycle, facilitating swift, simple, and portable application creation on both desktop and cloud platforms. Its all-encompassing platform features user interfaces, command-line tools, application programming interfaces, and security measures designed to function cohesively throughout the application delivery process. Jumpstart your programming efforts by utilizing Docker images to craft your own distinct applications on both Windows and Mac systems. With Docker Compose, you can build multi-container applications effortlessly. Furthermore, it seamlessly integrates with tools you already use in your development workflow, such as VS Code, CircleCI, and GitHub. You can package your applications as portable container images, ensuring they operate uniformly across various environments, from on-premises Kubernetes to AWS ECS, Azure ACI, Google GKE, and beyond. Additionally, Docker provides access to trusted content, including official Docker images and those from verified publishers, ensuring quality and reliability in your application development journey. This versatility and integration make Docker an invaluable asset for developers aiming to enhance their productivity and efficiency.
  • 2
    GitHub Reviews
    Top Pick
    GitHub stands as the leading platform for developers globally, renowned for its security, scalability, and community appreciation. By joining the ranks of millions of developers and businesses, you can contribute to the software that drives the world forward. Collaborate within the most inventive communities, all while utilizing our top-tier tools, support, and services. If you're overseeing various contributors, take advantage of our free GitHub Team for Open Source option. Additionally, GitHub Sponsors is available to assist in financing your projects. We're thrilled to announce the return of The Pack, where we’ve teamed up to provide students and educators with complimentary access to premier developer tools throughout the academic year and beyond. Furthermore, if you work for a recognized nonprofit, association, or a 501(c)(3), we offer a discounted Organization account to support your mission. With these offerings, GitHub continues to empower diverse users in their software development journeys.
  • 3
    Jupyter Notebook Reviews
    The Jupyter Notebook is a web-based open-source tool that enables users to create and distribute documents featuring live code, visualizations, equations, and written explanations. Its applications are diverse and encompass tasks such as data cleaning and transformation, statistical modeling, numerical simulations, data visualization, machine learning, among others, showcasing its versatility in various fields. Additionally, it serves as an excellent platform for collaboration and sharing insights within the data science community.
  • 4
    Python Reviews
    At the heart of extensible programming lies the definition of functions. Python supports both mandatory and optional parameters, keyword arguments, and even allows for arbitrary lists of arguments. Regardless of whether you're just starting out in programming or you have years of experience, Python is accessible and straightforward to learn. This programming language is particularly welcoming for beginners, while still offering depth for those familiar with other programming environments. The subsequent sections provide an excellent foundation to embark on your Python programming journey! The vibrant community organizes numerous conferences and meetups for collaborative coding and sharing ideas. Additionally, Python's extensive documentation serves as a valuable resource, and the mailing lists keep users connected. The Python Package Index (PyPI) features a vast array of third-party modules that enrich the Python experience. With both the standard library and community-contributed modules, Python opens the door to limitless programming possibilities, making it a versatile choice for developers of all levels.
  • 5
    R Reviews

    R

    The R Foundation

    Free
    R is a comprehensive environment and programming language tailored for statistical analysis and graphical representation. As a part of the GNU project, it shares similarities with the S language, which was originally designed by John Chambers and his team at Bell Laboratories, now known as Lucent Technologies. Essentially, R serves as an alternative implementation of S, and while there are notable distinctions between the two, a significant amount of S code can be executed in R without modification. This versatile language offers a broad spectrum of statistical methods, including both linear and nonlinear modeling, classical statistical tests, time-series analytics, classification, and clustering, among others, and it boasts a high level of extensibility. The S language is frequently utilized in research focused on statistical methodologies, and R presents an Open Source avenue for engaging in this field. Moreover, one of R's key advantages lies in its capability to generate high-quality publication-ready graphics, facilitating the inclusion of mathematical symbols and formulas as needed, which enhances its usability for researchers and analysts alike. Ultimately, R continues to be a powerful tool for those seeking to explore and visualize data effectively.
  • Previous
  • You're on page 1
  • Next