Best Anomaly Detection Software for Amazon Kinesis

Find and compare the best Anomaly Detection software for Amazon Kinesis in 2025

Use the comparison tool below to compare the top Anomaly Detection software for Amazon Kinesis on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Edge Delta Reviews

    Edge Delta

    Edge Delta

    $0.20 per GB
    Edge Delta is a new way to do observability. We are the only provider that processes your data as it's created and gives DevOps, platform engineers and SRE teams the freedom to route it anywhere. As a result, customers can make observability costs predictable, surface the most useful insights, and shape your data however they need. Our primary differentiator is our distributed architecture. We are the only observability provider that pushes data processing upstream to the infrastructure level, enabling users to process their logs and metrics as soon as they’re created at the source. Data processing includes: * Shaping, enriching, and filtering data * Creating log analytics * Distilling metrics libraries into the most useful data * Detecting anomalies and triggering alerts We combine our distributed approach with a column-oriented backend to help users store and analyze massive data volumes without impacting performance or cost. By using Edge Delta, customers can reduce observability costs without sacrificing visibility. Additionally, they can surface insights and trigger alerts before data leaves their environment.
  • 2
    Validio Reviews
    Examine the usage of your data assets, focusing on aspects like popularity, utilization, and schema coverage. Gain vital insights into your data assets, including their quality and usage metrics. You can easily locate and filter the necessary data by leveraging metadata tags and descriptions. Additionally, these insights will help you drive data governance and establish clear ownership within your organization. By implementing a streamlined lineage from data lakes to warehouses, you can enhance collaboration and accountability. An automatically generated field-level lineage map provides a comprehensive view of your entire data ecosystem. Moreover, anomaly detection systems adapt by learning from your data trends and seasonal variations, ensuring automatic backfilling with historical data. Thresholds driven by machine learning are specifically tailored for each data segment, relying on actual data rather than just metadata to ensure accuracy and relevance. This holistic approach empowers organizations to better manage their data landscape effectively.
  • Previous
  • You're on page 1
  • Next