We are excited to unveil Jukebox, a cutting-edge neural network designed to create music, including basic vocalization, in diverse genres and artistic expressions as raw audio. Alongside the release of the model weights and code, we are offering a tool to help users explore the music samples generated by Jukebox. By inputting genre, artist, and lyrics, users can receive entirely new music pieces crafted from the ground up. Jukebox is capable of producing a vast array of musical and vocal styles, and it can also generalize to lyrics that were not part of the training dataset. The lyrics included here have been collaboratively crafted by researchers at OpenAI and a language model. When provided with lyrics from its training set, Jukebox generates songs that diverge significantly from the originals, showcasing its creative capabilities. Users can input a 12-second audio clip for Jukebox to build upon, with the final output reflecting a desired style. Our focus on music stems from a desire to advance the potential of generative models further. Utilizing a quantization-based approach called VQ-VAE, Jukebox’s autoencoder model effectively compresses audio into a discrete latent space, enabling innovative sound generation. As we continue to refine these technologies, we look forward to the creative possibilities that lie ahead.