Best AI Models for Linux of 2025 - Page 3

Find and compare the best AI Models for Linux in 2025

Use the comparison tool below to compare the top AI Models for Linux on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    SmolLM2 Reviews

    SmolLM2

    Hugging Face

    Free
    SmolLM2 comprises an advanced suite of compact language models specifically created for on-device functionalities. This collection features models with varying sizes, including those with 1.7 billion parameters, as well as more streamlined versions at 360 million and 135 million parameters, ensuring efficient performance on even the most limited hardware. They excel in generating text and are fine-tuned for applications requiring real-time responsiveness and minimal latency, delivering high-quality outcomes across a multitude of scenarios such as content generation, coding support, and natural language understanding. The versatility of SmolLM2 positions it as an ideal option for developers aiming to incorporate robust AI capabilities into mobile devices, edge computing solutions, and other settings where resources are constrained. Its design reflects a commitment to balancing performance and accessibility, making cutting-edge AI technology more widely available.
  • 2
    QwQ-Max-Preview Reviews
    QwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community.
  • 3
    Mistral Large 2 Reviews
    Mistral AI has introduced the Mistral Large 2, a sophisticated AI model crafted to excel in various domains such as code generation, multilingual understanding, and intricate reasoning tasks. With an impressive 128k context window, this model accommodates a wide array of languages, including English, French, Spanish, and Arabic, while also supporting an extensive list of over 80 programming languages. Designed for high-throughput single-node inference, Mistral Large 2 is perfectly suited for applications requiring large context handling. Its superior performance on benchmarks like MMLU, coupled with improved capabilities in code generation and reasoning, guarantees both accuracy and efficiency in results. Additionally, the model features enhanced function calling and retrieval mechanisms, which are particularly beneficial for complex business applications. This makes Mistral Large 2 not only versatile but also a powerful tool for developers and businesses looking to leverage advanced AI capabilities.
  • 4
    Llama 4 Behemoth Reviews
    Llama 4 Behemoth, with 288 billion active parameters, is Meta's flagship AI model, setting new standards for multimodal performance. Outpacing its predecessors like GPT-4.5 and Claude Sonnet 3.7, it leads the field in STEM benchmarks, offering cutting-edge results in tasks such as problem-solving and reasoning. Designed as the teacher model for the Llama 4 series, Behemoth drives significant improvements in model quality and efficiency through distillation. Although still in development, Llama 4 Behemoth is shaping the future of AI with its unparalleled intelligence, particularly in math, image, and multilingual tasks.
  • 5
    Llama 4 Maverick Reviews
    Llama 4 Maverick is a cutting-edge multimodal AI model with 17 billion active parameters and 128 experts, setting a new standard for efficiency and performance. It excels in diverse domains, outperforming other models such as GPT-4o and Gemini 2.0 Flash in coding, reasoning, and image-related tasks. Llama 4 Maverick integrates both text and image processing seamlessly, offering enhanced capabilities for complex tasks such as visual question answering, content generation, and problem-solving. The model’s performance-to-cost ratio makes it an ideal choice for businesses looking to integrate powerful AI into their operations without the hefty resource demands.
  • 6
    Llama 4 Scout Reviews
    Llama 4 Scout is an advanced multimodal AI model with 17 billion active parameters, offering industry-leading performance with a 10 million token context length. This enables it to handle complex tasks like multi-document summarization and detailed code reasoning with impressive accuracy. Scout surpasses previous Llama models in both text and image understanding, making it an excellent choice for applications that require a combination of language processing and image analysis. Its powerful capabilities in long-context tasks and image-grounding applications set it apart from other models in its class, providing superior results for a wide range of industries.
  • 7
    Qwen3 Reviews
    Qwen3 is a state-of-the-art large language model designed to revolutionize the way we interact with AI. Featuring both thinking and non-thinking modes, Qwen3 allows users to customize its response style, ensuring optimal performance for both complex reasoning tasks and quick inquiries. With the ability to support 119 languages, the model is suitable for international projects. The model's hybrid training approach, which involves over 36 trillion tokens, ensures accuracy across a variety of disciplines, from coding to STEM problems. Its integration with platforms such as Hugging Face, ModelScope, and Kaggle allows for easy adoption in both research and production environments. By enhancing multilingual support and incorporating advanced AI techniques, Qwen3 is designed to push the boundaries of AI-driven applications.
  • 8
    Mistral Medium 3 Reviews
    Mistral Medium 3 is an innovative AI model designed to offer high performance at a significantly lower cost, making it an attractive solution for enterprises. It integrates seamlessly with both on-premises and cloud environments, supporting hybrid deployments for more flexibility. This model stands out in professional use cases such as coding, STEM tasks, and multimodal understanding, where it achieves near-competitive results against larger, more expensive models. Additionally, Mistral Medium 3 allows businesses to deploy custom post-training and integrate it into existing systems, making it adaptable to various industry needs. With its impressive performance in coding tasks and real-world human evaluations, Mistral Medium 3 is a cost-effective solution that enables companies to implement AI into their workflows. Its enterprise-focused features, including continuous pretraining and domain-specific fine-tuning, make it a reliable tool for sectors like healthcare, financial services, and energy.
  • 9
    Piper TTS Reviews
    Piper is a rapidly operating, localized neural text-to-speech (TTS) system that is particularly optimized for devices like the Raspberry Pi 4, aiming to provide top-notch speech synthesis capabilities without the dependence on cloud infrastructure. It employs neural network models developed with VITS and subsequently exported to ONNX Runtime, which facilitates both efficient and natural-sounding speech production. Supporting a diverse array of languages, Piper includes English (both US and UK dialects), Spanish (from Spain and Mexico), French, German, and many others, with downloadable voice options available. Users have the flexibility to operate Piper through command-line interfaces or integrate it seamlessly into Python applications via the piper-tts package. The system boasts features such as real-time audio streaming, JSON input for batch processing, and compatibility with multi-speaker models, enhancing its versatility. Additionally, Piper makes use of espeak-ng for phoneme generation, transforming text into phonemes before generating speech. It has found applications in various projects, including Home Assistant, Rhasspy 3, and NVDA, among others, illustrating its adaptability across different platforms and use cases. With its emphasis on local processing, Piper appeals to users looking for privacy and efficiency in their speech synthesis solutions.
  • 10
    HunyuanVideo-Avatar Reviews
    HunyuanVideo-Avatar allows for the transformation of any avatar images into high-dynamic, emotion-responsive videos by utilizing straightforward audio inputs. This innovative model is based on a multimodal diffusion transformer (MM-DiT) architecture, enabling the creation of lively, emotion-controllable dialogue videos featuring multiple characters. It can process various styles of avatars, including photorealistic, cartoonish, 3D-rendered, and anthropomorphic designs, accommodating different sizes from close-up portraits to full-body representations. Additionally, it includes a character image injection module that maintains character consistency while facilitating dynamic movements. An Audio Emotion Module (AEM) extracts emotional nuances from a source image, allowing for precise emotional control within the produced video content. Moreover, the Face-Aware Audio Adapter (FAA) isolates audio effects to distinct facial regions through latent-level masking, which supports independent audio-driven animations in scenarios involving multiple characters, enhancing the overall experience of storytelling through animated avatars. This comprehensive approach ensures that creators can craft richly animated narratives that resonate emotionally with audiences.
  • 11
    Qwen3-Coder Reviews
    Qwen3-Coder is a versatile coding model that comes in various sizes, prominently featuring the 480B-parameter Mixture-of-Experts version with 35B active parameters, which naturally accommodates 256K-token contexts that can be extended to 1M tokens. This model achieves impressive performance that rivals Claude Sonnet 4, having undergone pre-training on 7.5 trillion tokens, with 70% of that being code, and utilizing synthetic data refined through Qwen2.5-Coder to enhance both coding skills and overall capabilities. Furthermore, the model benefits from post-training techniques that leverage extensive, execution-guided reinforcement learning, which facilitates the generation of diverse test cases across 20,000 parallel environments, thereby excelling in multi-turn software engineering tasks such as SWE-Bench Verified without needing test-time scaling. In addition to the model itself, the open-source Qwen Code CLI, derived from Gemini Code, empowers users to deploy Qwen3-Coder in dynamic workflows with tailored prompts and function calling protocols, while also offering smooth integration with Node.js, OpenAI SDKs, and environment variables. This comprehensive ecosystem supports developers in optimizing their coding projects effectively and efficiently.
  • 12
    NVIDIA Cosmos Reviews
    NVIDIA Cosmos serves as a cutting-edge platform tailored for developers, featuring advanced generative World Foundation Models (WFMs), sophisticated video tokenizers, safety protocols, and a streamlined data processing and curation system aimed at enhancing the development of physical AI. This platform empowers developers who are focused on areas such as autonomous vehicles, robotics, and video analytics AI agents to create highly realistic, physics-informed synthetic video data, leveraging an extensive dataset that encompasses 20 million hours of both actual and simulated footage, facilitating the rapid simulation of future scenarios, the training of world models, and the customization of specific behaviors. The platform comprises three primary types of WFMs: Cosmos Predict, which can produce up to 30 seconds of continuous video from various input modalities; Cosmos Transfer, which modifies simulations to work across different environments and lighting conditions for improved domain augmentation; and Cosmos Reason, a vision-language model that implements structured reasoning to analyze spatial-temporal information for effective planning and decision-making. With these capabilities, NVIDIA Cosmos significantly accelerates the innovation cycle in physical AI applications, fostering breakthroughs across various industries.
  • 13
    NVIDIA Isaac GR00T Reviews
    NVIDIA's Isaac GR00T (Generalist Robot 00 Technology) serves as an innovative research platform aimed at the creation of versatile humanoid robot foundation models and their associated data pipelines. This platform features models such as Isaac GR00T-N, alongside synthetic motion blueprints, GR00T-Mimic for enhancing demonstrations, and GR00T-Dreams, which generates novel synthetic trajectories to expedite the progress in humanoid robotics. A recent highlight is the introduction of the open-source Isaac GR00T N1 foundation model, characterized by a dual-system cognitive structure that includes a rapid-response “System 1” action model and a language-capable, deliberative “System 2” reasoning model. The latest iteration, GR00T N1.5, brings forth significant upgrades, including enhanced vision-language grounding, improved following of language commands, increased adaptability with few-shot learning, and support for new robot embodiments. With the integration of tools like Isaac Sim, Lab, and Omniverse, GR00T enables developers to effectively train, simulate, post-train, and deploy adaptable humanoid agents utilizing a blend of real and synthetic data. This comprehensive approach not only accelerates robotics research but also opens up new avenues for innovation in humanoid robot applications.
  • 14
    DeepSeek-V3.2-Exp Reviews
    Introducing DeepSeek-V3.2-Exp, our newest experimental model derived from V3.1-Terminus, featuring the innovative DeepSeek Sparse Attention (DSA) that enhances both training and inference speed for lengthy contexts. This DSA mechanism allows for precise sparse attention while maintaining output quality, leading to improved performance for tasks involving long contexts and a decrease in computational expenses. Benchmark tests reveal that V3.2-Exp matches the performance of V3.1-Terminus while achieving these efficiency improvements. The model is now fully operational across app, web, and API platforms. Additionally, to enhance accessibility, we have slashed DeepSeek API prices by over 50% effective immediately. During a transition period, users can still utilize V3.1-Terminus via a temporary API endpoint until October 15, 2025. DeepSeek encourages users to share their insights regarding DSA through our feedback portal. Complementing the launch, DeepSeek-V3.2-Exp has been made open-source, with model weights and essential technology—including crucial GPU kernels in TileLang and CUDA—accessible on Hugging Face. We look forward to seeing how the community engages with this advancement.
  • 15
    Hunyuan-Vision-1.5 Reviews
    HunyuanVision, an innovative vision-language model created by Tencent's Hunyuan team, employs a mamba-transformer hybrid architecture that excels in performance and offers efficient inference for multimodal reasoning challenges. The latest iteration, Hunyuan-Vision-1.5, focuses on the concept of “thinking on images,” enabling it to not only comprehend the interplay of visual and linguistic content but also engage in advanced reasoning that includes tasks like cropping, zooming, pointing, box drawing, or annotating images for enhanced understanding. This model is versatile, supporting various vision tasks such as image and video recognition, OCR, and diagram interpretation, in addition to facilitating visual reasoning and 3D spatial awareness, all within a cohesive multilingual framework. Designed for compatibility across different languages and tasks, HunyuanVision aims to be open-sourced, providing access to checkpoints, a technical report, and inference support to foster community engagement and experimentation. Ultimately, this initiative encourages researchers and developers to explore and leverage the model's capabilities in diverse applications.
  • 16
    DeepSeek-V3.2 Reviews
    DeepSeek-V3.2 is a highly optimized large language model engineered to balance top-tier reasoning performance with significant computational efficiency. It builds on DeepSeek's innovations by introducing DeepSeek Sparse Attention (DSA), a custom attention algorithm that reduces complexity and excels in long-context environments. The model is trained using a sophisticated reinforcement learning approach that scales post-training compute, enabling it to perform on par with GPT-5 and match the reasoning skill of Gemini-3.0-Pro. Its Speciale variant overachieves in demanding reasoning benchmarks and does not include tool-calling capabilities, making it ideal for deep problem-solving tasks. DeepSeek-V3.2 is also trained using an agentic synthesis pipeline that creates high-quality, multi-step interactive data to improve decision-making, compliance, and tool-integration skills. It introduces a new chat template design featuring explicit thinking sections, improved tool-calling syntax, and a dedicated developer role used strictly for search-agent workflows. Users can encode messages using provided Python utilities that convert OpenAI-style chat messages into the expected DeepSeek format. Fully open-source under the MIT license, DeepSeek-V3.2 is a flexible, cutting-edge model for researchers, developers, and enterprise AI teams.
  • 17
    DeepSeek-V3.2-Speciale Reviews
    DeepSeek-V3.2-Speciale is the most advanced reasoning-focused version of the DeepSeek-V3.2 family, designed to excel in mathematical, algorithmic, and logic-intensive tasks. It incorporates DeepSeek Sparse Attention (DSA), an efficient attention mechanism tailored for very long contexts, enabling scalable reasoning with minimal compute costs. The model undergoes a robust reinforcement learning pipeline that scales post-training compute to frontier levels, enabling performance that exceeds GPT-5 on internal evaluations. Its achievements include gold-medal-level solutions in IMO 2025, IOI 2025, ICPC World Finals, and CMO 2025, with final submissions publicly released for verification. Unlike the standard V3.2 model, the Speciale variant removes tool-calling capabilities to maximize focused reasoning output without external interactions. DeepSeek-V3.2-Speciale uses a revised chat template with explicit thinking blocks and system-level reasoning formatting. The repository includes encoding tools showing how to convert OpenAI-style chat messages into DeepSeek’s specialized input format. With its MIT license and 685B-parameter architecture, DeepSeek-V3.2-Speciale offers cutting-edge performance for academic research, competitive programming, and enterprise-level reasoning applications.
  • 18
    Lux Reviews

    Lux

    OpenAGI Foundation

    Free
    Lux introduces a breakthrough approach to AI by enabling models to control computers the same way humans do, interacting with interfaces visually and functionally rather than through traditional API calls. Through its three distinct modes—Tasker for procedural workflows, Actor for ultra-fast execution, and Thinker for complex problem-solving—developers can tailor how agents behave in different environments. Lux demonstrates its power through practical examples such as autonomous Amazon product scraping, automated software QA using Nuclear, and rapid financial data retrieval from Nasdaq. The platform is designed so developers can spin up real computer-use agents within minutes, supported by robust SDKs and pre-built templates. Its flexible architecture allows agents to understand ambiguous goals, strategize over long timelines, and complete multi-step tasks without manual intervention. This shift expands AI’s capabilities beyond reasoning into hands-on action, enabling automation across any digital interface. What was once a capability reserved for large tech labs is now accessible to any developer or team. Lux ultimately transforms AI from a passive assistant into an active operator capable of working directly inside software.
  • 19
    Devstral 2 Reviews
    Devstral 2 represents a cutting-edge, open-source AI model designed specifically for software engineering, going beyond mere code suggestion to comprehend and manipulate entire codebases, which allows it to perform tasks such as multi-file modifications, bug corrections, refactoring, dependency management, and generating context-aware code. The Devstral 2 suite comprises a robust 123-billion-parameter model and a more compact 24-billion-parameter version, known as “Devstral Small 2,” providing teams with the adaptability they need; the larger variant is optimized for complex coding challenges that require a thorough understanding of context, while the smaller version is suitable for operation on less powerful hardware. With an impressive context window of up to 256 K tokens, Devstral 2 can analyze large repositories, monitor project histories, and ensure a coherent grasp of extensive files, which is particularly beneficial for tackling the complexities of real-world projects. The command-line interface (CLI) enhances the model's capabilities by keeping track of project metadata, Git statuses, and the directory structure, thereby enriching the context for the AI and rendering “vibe-coding” even more effective. This combination of advanced features positions Devstral 2 as a transformative tool in the software development landscape.
  • 20
    Devstral Small 2 Reviews
    Devstral Small 2 serves as the streamlined, 24 billion-parameter version of Mistral AI's innovative coding-centric model lineup, released under the flexible Apache 2.0 license to facilitate both local implementations and API interactions. In conjunction with its larger counterpart, Devstral 2, this model introduces "agentic coding" features suitable for environments with limited computational power, boasting a generous 256K-token context window that allows it to comprehend and modify entire codebases effectively. Achieving a score of approximately 68.0% on the standard code-generation evaluation known as SWE-Bench Verified, Devstral Small 2 stands out among open-weight models that are significantly larger. Its compact size and efficient architecture enable it to operate on a single GPU or even in CPU-only configurations, making it an ideal choice for developers, small teams, or enthusiasts lacking access to expansive data-center resources. Furthermore, despite its smaller size, Devstral Small 2 successfully maintains essential functionalities of its larger variants, such as the ability to reason through multiple files and manage dependencies effectively, ensuring that users can still benefit from robust coding assistance. This blend of efficiency and performance makes it a valuable tool in the coding community.
  • 21
    DeepCoder Reviews

    DeepCoder

    Agentica Project

    Free
    DeepCoder, an entirely open-source model for code reasoning and generation, has been developed through a partnership between Agentica Project and Together AI. Leveraging the foundation of DeepSeek-R1-Distilled-Qwen-14B, it has undergone fine-tuning via distributed reinforcement learning, achieving a notable accuracy of 60.6% on LiveCodeBench, which marks an 8% enhancement over its predecessor. This level of performance rivals that of proprietary models like o3-mini (2025-01-031 Low) and o1, all while operating with only 14 billion parameters. The training process spanned 2.5 weeks on 32 H100 GPUs, utilizing a carefully curated dataset of approximately 24,000 coding challenges sourced from validated platforms, including TACO-Verified, PrimeIntellect SYNTHETIC-1, and submissions to LiveCodeBench. Each problem mandated a legitimate solution along with a minimum of five unit tests to guarantee reliability during reinforcement learning training. Furthermore, to effectively manage long-range context, DeepCoder incorporates strategies such as iterative context lengthening and overlong filtering, ensuring it remains adept at handling complex coding tasks. This innovative approach allows DeepCoder to maintain high standards of accuracy and reliability in its code generation capabilities.
  • 22
    DeepSWE Reviews

    DeepSWE

    Agentica Project

    Free
    DeepSWE is an innovative and fully open-source coding agent that utilizes the Qwen3-32B foundation model, trained solely through reinforcement learning (RL) without any supervised fine-tuning or reliance on proprietary model distillation. Created with rLLM, which is Agentica’s open-source RL framework for language-based agents, DeepSWE operates as a functional agent within a simulated development environment facilitated by the R2E-Gym framework. This allows it to leverage a variety of tools, including a file editor, search capabilities, shell execution, and submission features, enabling the agent to efficiently navigate codebases, modify multiple files, compile code, run tests, and iteratively create patches or complete complex engineering tasks. Beyond simple code generation, DeepSWE showcases advanced emergent behaviors; when faced with bugs or new feature requests, it thoughtfully reasons through edge cases, searches for existing tests within the codebase, suggests patches, develops additional tests to prevent regressions, and adapts its cognitive approach based on the task at hand. This flexibility and capability make DeepSWE a powerful tool in the realm of software development.
  • 23
    DeepScaleR Reviews

    DeepScaleR

    Agentica Project

    Free
    DeepScaleR is a sophisticated language model comprising 1.5 billion parameters, refined from DeepSeek-R1-Distilled-Qwen-1.5B through the use of distributed reinforcement learning combined with an innovative strategy that incrementally expands its context window from 8,000 to 24,000 tokens during the training process. This model was developed using approximately 40,000 meticulously selected mathematical problems sourced from high-level competition datasets, including AIME (1984–2023), AMC (pre-2023), Omni-MATH, and STILL. Achieving an impressive 43.1% accuracy on the AIME 2024 exam, DeepScaleR demonstrates a significant enhancement of around 14.3 percentage points compared to its base model, and it even outperforms the proprietary O1-Preview model, which is considerably larger. Additionally, it excels on a variety of mathematical benchmarks such as MATH-500, AMC 2023, Minerva Math, and OlympiadBench, indicating that smaller, optimized models fine-tuned with reinforcement learning can rival or surpass the capabilities of larger models in complex reasoning tasks. This advancement underscores the potential of efficient modeling approaches in the realm of mathematical problem-solving.
  • 24
    GLM-4.6V Reviews
    The GLM-4.6V is an advanced, open-source multimodal vision-language model that belongs to the Z.ai (GLM-V) family, specifically engineered for tasks involving reasoning, perception, and action. It is available in two configurations: a comprehensive version with 106 billion parameters suitable for cloud environments or high-performance computing clusters, and a streamlined “Flash” variant featuring 9 billion parameters, which is tailored for local implementation or scenarios requiring low latency. With a remarkable native context window that accommodates up to 128,000 tokens during its training phase, GLM-4.6V can effectively manage extensive documents or multimodal data inputs. One of its standout features is the built-in Function Calling capability, allowing the model to accept various forms of visual media — such as images, screenshots, and documents — as inputs directly, eliminating the need for manual text conversion. This functionality not only facilitates reasoning about the visual content but also enables the model to initiate tool calls, effectively merging visual perception with actionable results. The versatility of GLM-4.6V opens the door to a wide array of applications, including the generation of interleaved image-and-text content, which can seamlessly integrate document comprehension with text summarization or the creation of responses that include image annotations, thereby greatly enhancing user interaction and output quality.
  • 25
    GLM-4.1V Reviews
    GLM-4.1V is an advanced vision-language model that offers a robust and streamlined multimodal capability for reasoning and understanding across various forms of media, including images, text, and documents. The 9-billion-parameter version, known as GLM-4.1V-9B-Thinking, is developed on the foundation of GLM-4-9B and has been improved through a unique training approach that employs Reinforcement Learning with Curriculum Sampling (RLCS). This model accommodates a context window of 64k tokens and can process high-resolution inputs, supporting images up to 4K resolution with any aspect ratio, which allows it to tackle intricate tasks such as optical character recognition, image captioning, chart and document parsing, video analysis, scene comprehension, and GUI-agent workflows, including the interpretation of screenshots and recognition of UI elements. In benchmark tests conducted at the 10 B-parameter scale, GLM-4.1V-9B-Thinking demonstrated exceptional capabilities, achieving the highest performance on 23 out of 28 evaluated tasks. Its advancements signify a substantial leap forward in the integration of visual and textual data, setting a new standard for multimodal models in various applications.