Best AI Models for Taylor AI

Find and compare the best AI Models for Taylor AI in 2025

Use the comparison tool below to compare the top AI Models for Taylor AI on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Falcon-40B Reviews

    Falcon-40B

    Technology Innovation Institute (TII)

    Free
    Falcon-40B is a causal decoder-only model consisting of 40 billion parameters, developed by TII and trained on 1 trillion tokens from RefinedWeb, supplemented with carefully selected datasets. It is distributed under the Apache 2.0 license. Why should you consider using Falcon-40B? This model stands out as the leading open-source option available, surpassing competitors like LLaMA, StableLM, RedPajama, and MPT, as evidenced by its ranking on the OpenLLM Leaderboard. Its design is specifically tailored for efficient inference, incorporating features such as FlashAttention and multiquery capabilities. Moreover, it is offered under a flexible Apache 2.0 license, permitting commercial applications without incurring royalties or facing restrictions. It's important to note that this is a raw, pretrained model and is generally recommended to be fine-tuned for optimal performance in most applications. If you need a version that is more adept at handling general instructions in a conversational format, you might want to explore Falcon-40B-Instruct as a potential alternative.
  • 2
    Falcon-7B Reviews

    Falcon-7B

    Technology Innovation Institute (TII)

    Free
    Falcon-7B is a causal decoder-only model comprising 7 billion parameters, developed by TII and trained on an extensive dataset of 1,500 billion tokens from RefinedWeb, supplemented with specially selected corpora, and it is licensed under Apache 2.0. What are the advantages of utilizing Falcon-7B? This model surpasses similar open-source alternatives, such as MPT-7B, StableLM, and RedPajama, due to its training on a remarkably large dataset of 1,500 billion tokens from RefinedWeb, which is further enhanced with carefully curated content, as evidenced by its standing on the OpenLLM Leaderboard. Additionally, it boasts an architecture that is finely tuned for efficient inference, incorporating technologies like FlashAttention and multiquery mechanisms. Moreover, the permissive nature of the Apache 2.0 license means users can engage in commercial applications without incurring royalties or facing significant limitations. This combination of performance and flexibility makes Falcon-7B a strong choice for developers seeking advanced modeling capabilities.
  • 3
    StarCoder Reviews
    StarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks.
  • 4
    Llama 2 Reviews
    Introducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively.
  • Previous
  • You're on page 1
  • Next