Best AI Memory Layers for GitHub

Find and compare the best AI Memory Layers for GitHub in 2026

Use the comparison tool below to compare the top AI Memory Layers for GitHub on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Papr Reviews

    Papr

    Papr.ai

    $20 per month
    Papr is an innovative platform focused on memory and context intelligence, utilizing AI to create a predictive memory layer that integrates vector embeddings with a knowledge graph accessible through a single API. This allows AI systems to efficiently store, connect, and retrieve contextual information across various formats such as conversations, documents, and structured data with remarkable accuracy. Developers can seamlessly incorporate production-ready memory into their AI agents and applications with minimal coding effort, ensuring that context is preserved throughout user interactions and enabling assistants to retain user history and preferences. The platform is designed to handle a wide range of data inputs, including chat logs, documents, PDFs, and tool-related information, and it automatically identifies entities and relationships to form a dynamic memory graph that enhances retrieval precision while predicting user needs through advanced caching techniques, all while ensuring quick response times and top-notch retrieval capabilities. Papr's versatile architecture facilitates natural language searches and GraphQL queries, incorporating robust multi-tenant access controls and offering two types of memory tailored for user personalization, thus maximizing the effectiveness of AI applications. Additionally, the platform's adaptability makes it a valuable asset for developers looking to create more intuitive and responsive AI systems.
  • 2
    Hyperspell Reviews
    Hyperspell serves as a comprehensive memory and context framework for AI agents, enabling the creation of data-driven, contextually aware applications without the need to handle the intricate pipeline. It continuously collects data from user-contributed sources such as drives, documents, chats, and calendars, constructing a tailored memory graph that retains context, thereby ensuring that future queries benefit from prior interactions. This platform facilitates persistent memory, context engineering, and grounded generation, allowing for the production of either structured summaries or those suitable for large language models, all while integrating seamlessly with your preferred LLM and upholding rigorous security measures to maintain data privacy and auditability. With a straightforward one-line integration and pre-existing components designed for authentication and data access, Hyperspell simplifies the complexities of indexing, chunking, schema extraction, and memory updates. As it evolves, it continuously learns from user interactions, with relevant answers reinforcing context to enhance future performance. Ultimately, Hyperspell empowers developers to focus on application innovation while it manages the complexities of memory and context.
  • Previous
  • You're on page 1
  • Next