Best AI Infrastructure Platforms for GitHub

Find and compare the best AI Infrastructure platforms for GitHub in 2025

Use the comparison tool below to compare the top AI Infrastructure platforms for GitHub on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Movestax Reviews
    Movestax is a platform that focuses on serverless functions for builders. Movestax offers a range of services, including serverless functions, databases and authentication. Movestax has the services that you need to grow, whether you're starting out or scaling quickly. Instantly deploy frontend and backend apps with integrated CI/CD. PostgreSQL and MySQL are fully managed, scalable, and just work. Create sophisticated workflows and integrate them directly into your cloud infrastructure. Run serverless functions to automate tasks without managing servers. Movestax's integrated authentication system simplifies user management. Accelerate development by leveraging pre-built APIs. Object storage is a secure, scalable way to store and retrieve files.
  • 2
    DigitalOcean Reviews

    DigitalOcean

    DigitalOcean

    $5 per month
    4 Ratings
    The easiest cloud platform for developers and teams. DigitalOcean makes it easy to deploy, manage, and scale cloud apps faster and more efficiently. DigitalOcean makes it easy to manage infrastructure for businesses and teams, no matter how many virtual machines you have. DigitalOcean App Platform: Create, deploy, scale and scale apps quickly with a fully managed solution. We will manage the infrastructure, dependencies, and app runtimes so you can quickly push code to production. You can quickly build, deploy, manage, scale, and scale apps using a simple, intuitive, visually rich experience. Apps are automatically secured We manage, renew, and create SSL certificates for you. We also protect your apps against DDoS attacks. We help you focus on the important things: creating amazing apps. We can manage infrastructure, databases, operating systems, applications, runtimes, and other dependencies.
  • 3
    Klu Reviews
    Klu.ai, a Generative AI Platform, simplifies the design, deployment, and optimization of AI applications. Klu integrates your Large Language Models and incorporates data from diverse sources to give your applications unique context. Klu accelerates the building of applications using language models such as Anthropic Claude (Azure OpenAI), GPT-4 (Google's GPT-4), and over 15 others. It allows rapid prompt/model experiments, data collection and user feedback and model fine tuning while cost-effectively optimising performance. Ship prompt generation, chat experiences and workflows in minutes. Klu offers SDKs for all capabilities and an API-first strategy to enable developer productivity. Klu automatically provides abstractions to common LLM/GenAI usage cases, such as: LLM connectors and vector storage, prompt templates, observability and evaluation/testing tools.
  • 4
    Deep Infra Reviews

    Deep Infra

    Deep Infra

    $0.70 per 1M input tokens
    Experience a robust, self-service machine learning platform that enables you to transform models into scalable APIs with just a few clicks. Create an account with Deep Infra through GitHub or log in using your GitHub credentials. Select from a vast array of popular ML models available at your fingertips. Access your model effortlessly via a straightforward REST API. Our serverless GPUs allow for quicker and more cost-effective production deployments than building your own infrastructure from scratch. We offer various pricing models tailored to the specific model utilized, with some language models available on a per-token basis. Most other models are charged based on the duration of inference execution, ensuring you only pay for what you consume. There are no long-term commitments or upfront fees, allowing for seamless scaling based on your evolving business requirements. All models leverage cutting-edge A100 GPUs, specifically optimized for high inference performance and minimal latency. Our system dynamically adjusts the model's capacity to meet your demands, ensuring optimal resource utilization at all times. This flexibility supports businesses in navigating their growth trajectories with ease.
  • 5
    Amazon SageMaker Model Building Reviews
    Amazon SageMaker equips users with an extensive suite of tools and libraries essential for developing machine learning models, emphasizing an iterative approach to experimenting with various algorithms and assessing their performance to identify the optimal solution for specific needs. Within SageMaker, you can select from a diverse range of algorithms, including more than 15 that are specifically designed and enhanced for the platform, as well as access over 150 pre-existing models from well-known model repositories with just a few clicks. Additionally, SageMaker includes a wide array of model-building resources, such as Amazon SageMaker Studio Notebooks and RStudio, which allow you to execute machine learning models on a smaller scale to evaluate outcomes and generate performance reports, facilitating the creation of high-quality prototypes. The integration of Amazon SageMaker Studio Notebooks accelerates the model development process and fosters collaboration among team members. These notebooks offer one-click access to Jupyter environments, enabling you to begin working almost immediately, and they also feature functionality for easy sharing of your work with others. Furthermore, the platform's overall design encourages continuous improvement and innovation in machine learning projects.
  • 6
    Amazon SageMaker Studio Lab Reviews
    Amazon SageMaker Studio Lab offers a complimentary environment for machine learning (ML) development, ensuring users have access to compute resources, storage of up to 15GB, and essential security features without any charge, allowing anyone to explore and learn about ML. To begin using this platform, all that is required is an email address; there is no need to set up infrastructure, manage access controls, or create an AWS account. It enhances the process of model development with seamless integration with GitHub and is equipped with widely-used ML tools, frameworks, and libraries for immediate engagement. Additionally, SageMaker Studio Lab automatically saves your progress, meaning you can easily pick up where you left off without needing to restart your sessions. You can simply close your laptop and return whenever you're ready to continue. This free development environment is designed specifically to facilitate learning and experimentation in machine learning. With its user-friendly setup, you can dive into ML projects right away, making it an ideal starting point for both newcomers and seasoned practitioners.
  • 7
    OpenServ Reviews
    OpenServ is a research laboratory specializing in applied AI, dedicated to creating the foundational systems for autonomous agents. Our advanced multi-agent orchestration platform integrates unique AI frameworks and protocols while ensuring exceptional ease of use for the end user. Streamline intricate tasks across Web3, DeFAI, and Web2 platforms. We are propelling advancements in the agentic domain through extensive collaborations with academic institutions, dedicated in-house research, and initiatives that engage with the community. For more insights, consult the whitepaper that outlines the architectural framework of OpenServ. Enjoy a fluid experience in developer engagement and agent creation with our software development kit (SDK). By joining us, you'll gain early access to our innovative platform, receive personalized assistance, and have the chance to influence its evolution moving forward, ultimately contributing to a transformative future in AI technology.
  • Previous
  • You're on page 1
  • Next