Best AI Inference Platforms for Hugging Face

Find and compare the best AI Inference platforms for Hugging Face in 2025

Use the comparison tool below to compare the top AI Inference platforms for Hugging Face on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Pinecone Reviews
    The AI Knowledge Platform. The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Fully managed and developer-friendly, the database is easily scalable without any infrastructure problems. Once you have vector embeddings created, you can search and manage them in Pinecone to power semantic searches, recommenders, or other applications that rely upon relevant information retrieval. Even with billions of items, ultra-low query latency Provide a great user experience. You can add, edit, and delete data via live index updates. Your data is available immediately. For more relevant and quicker results, combine vector search with metadata filters. Our API makes it easy to launch, use, scale, and scale your vector searching service without worrying about infrastructure. It will run smoothly and securely.
  • 2
    Lamini Reviews

    Lamini

    Lamini

    $99 per month
    Lamini allows enterprises to transform proprietary data into next-generation LLM capabilities by offering a platform that allows in-house software teams the opportunity to upgrade to OpenAI level AI teams, and build within the security provided by their existing infrastructure. Optimised JSON decoding guarantees a structured output. Fine-tuning retrieval-augmented retrieval to improve photographic memory. Improve accuracy and reduce hallucinations. Inferences for large batches can be highly parallelized. Parameter-efficient finetuning for millions of production adapters. Lamini is the sole company that allows enterprise companies to develop and control LLMs safely and quickly from anywhere. It uses the latest research and technologies to create ChatGPT, which was developed from GPT-3. These include, for example, fine-tuning and RLHF.
  • 3
    Msty Reviews

    Msty

    Msty

    $50 per year
    Chat with any AI model by clicking a button. No previous model setup knowledge is required. Msty was designed to work seamlessly offline. This ensures reliability and privacy. It also supports popular online models vendors for added flexibility. Split chats will revolutionize your research. Compare and contrast the responses of multiple AI models in real-time, streamlining your work and uncovering new insights. Msty puts the user in control. You can take your conversations anywhere you want and stop whenever you are satisfied. Replace an existing answer, or create and iterate several conversation branches. Delete branches that do not sound right. With delve mode every response is a new gateway to knowledge that's waiting to be found. Click on a word and begin a journey of exploration. Use Msty’s split chat feature in order to move desired conversation branches to a new split or new chat session.
  • 4
    Mystic Reviews
    You can deploy Mystic in your own Azure/AWS/GCP accounts or in our shared GPU cluster. All Mystic features can be accessed directly from your cloud. In just a few steps, you can get the most cost-effective way to run ML inference. Our shared cluster of graphics cards is used by hundreds of users at once. Low cost, but performance may vary depending on GPU availability in real time. We solve the infrastructure problem. A Kubernetes platform fully managed that runs on your own cloud. Open-source Python API and library to simplify your AI workflow. You get a platform that is high-performance to serve your AI models. Mystic will automatically scale GPUs up or down based on the number API calls that your models receive. You can easily view and edit your infrastructure using the Mystic dashboard, APIs, and CLI.
  • 5
    NVIDIA TensorRT Reviews
    NVIDIA TensorRT provides an ecosystem of APIs to support high-performance deep learning. It includes an inference runtime, model optimizations and a model optimizer that delivers low latency and high performance for production applications. TensorRT, built on the CUDA parallel programing model, optimizes neural networks trained on all major frameworks. It calibrates them for lower precision while maintaining high accuracy and deploys them across hyperscale data centres, workstations and laptops. It uses techniques such as layer and tensor-fusion, kernel tuning, and quantization on all types NVIDIA GPUs from edge devices to data centers. TensorRT is an open-source library that optimizes the inference performance for large language models.
  • 6
    SuperDuperDB Reviews
    Create and manage AI applications without the need to move data to complex vector databases and pipelines. Integrate AI, vector search and real-time inference directly with your database. Python is all you need. All your AI models can be deployed in a single, scalable deployment. The AI models and APIs are automatically updated as new data is processed. You don't need to duplicate your data or create an additional database to use vector searching and build on it. SuperDuperDB allows vector search within your existing database. Integrate and combine models such as those from Sklearn PyTorch HuggingFace, with AI APIs like OpenAI, to build even the most complicated AI applications and workflows. With simple Python commands, deploy all your AI models in one environment to automatically compute outputs in your datastore (inference).
  • 7
    Steamship Reviews
    Cloud-hosted AI packages that are managed and cloud-hosted will make it easier to ship AI faster. GPT-4 support is fully integrated. API tokens do not need to be used. Use our low-code framework to build. All major models can be integrated. Get an instant API by deploying. Scale and share your API without having to manage infrastructure. Make prompts, prompt chains, basic Python, and managed APIs. A clever prompt can be turned into a publicly available API that you can share. Python allows you to add logic and routing smarts. Steamship connects with your favorite models and services, so you don't need to learn a different API for each provider. Steamship maintains model output in a standard format. Consolidate training and inference, vector search, endpoint hosting. Import, transcribe or generate text. It can run all the models that you need. ShipQL allows you to query across all the results. Packages are fully-stack, cloud-hosted AI applications. Each instance you create gives you an API and private data workspace.
  • 8
    LM Studio Reviews
    Use models via the Chat UI in-app or an OpenAI compatible local server. Minimum requirements: Mac M1/M2/M3 or Windows PC with AVX2 processor. Linux is currently in beta. Privacy is a major reason to use a local LLM, and LM Studio was designed with that in mind. Your data is kept private and on your local machine. You can use LLMs that you load in LM Studio through an API server running locally.
  • 9
    Outspeed Reviews
    Outspeed provides networking infrastructure and inference infrastructure for building fast, real-time AI voice and video apps. AI-powered speech and natural language processing for intelligent voice assistants. Automated transcription and voice-controlled system. Create interactive digital characters to be used as virtual hosts, AI tutors or customer service. Real-time animations and natural conversations are key to engaging digital interactions. Real-time AI visual for quality control, surveillance and touchless interaction. High-speed and accurate processing and analysis of video streams and images. AI-driven content generation for creating vast, detailed digital worlds efficiently. Ideal for virtual reality, architectural visualizations and game environments. Adapt's flexible SDK, infrastructure and SDK allows you to create custom multimodal AI solutions. Combine AI models, data and interaction modes to create innovative applications.
  • 10
    Simplismart Reviews
    Simplismart’s fastest inference engine allows you to fine-tune and deploy AI model with ease. Integrate with AWS/Azure/GCP, and many other cloud providers, for simple, scalable and cost-effective deployment. Import open-source models from popular online repositories, or deploy your custom model. Simplismart can host your model or you can use your own cloud resources. Simplismart allows you to go beyond AI model deployment. You can train, deploy and observe any ML models and achieve increased inference speed at lower costs. Import any dataset to fine-tune custom or open-source models quickly. Run multiple training experiments efficiently in parallel to speed up your workflow. Deploy any model to our endpoints, or your own VPC/premises and enjoy greater performance at lower cost. Now, streamlined and intuitive deployments are a reality. Monitor GPU utilization, and all of your node clusters on one dashboard. On the move, detect any resource constraints or model inefficiencies.
  • Previous
  • You're on page 1
  • Next