Qwen-Image is a cutting-edge multimodal diffusion transformer (MMDiT) foundation model that delivers exceptional capabilities in image generation, text rendering, editing, and comprehension. It stands out for its proficiency in integrating complex text, effortlessly incorporating both alphabetic and logographic scripts into visuals while maintaining high typographic accuracy. The model caters to a wide range of artistic styles, from photorealism to impressionism, anime, and minimalist design. In addition to creation, it offers advanced image editing functionalities such as style transfer, object insertion or removal, detail enhancement, in-image text editing, and manipulation of human poses through simple prompts. Furthermore, its built-in vision understanding tasks, which include object detection, semantic segmentation, depth and edge estimation, novel view synthesis, and super-resolution, enhance its ability to perform intelligent visual analysis. Qwen-Image can be accessed through popular libraries like Hugging Face Diffusers and is equipped with prompt-enhancement tools to support multiple languages, making it a versatile tool for creators across various fields. Its comprehensive features position Qwen-Image as a valuable asset for both artists and developers looking to explore the intersection of visual art and technology.