Best AI Fine-Tuning Platforms for Hugging Face

Find and compare the best AI Fine-Tuning platforms for Hugging Face in 2025

Use the comparison tool below to compare the top AI Fine-Tuning platforms for Hugging Face on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    StackAI Reviews
    See Platform
    Learn More
    StackAI is an enterprise AI automation platform that allows organizations to build end-to-end internal tools and processes with AI agents. It ensures every workflow is secure, compliant, and governed, so teams can automate complex processes without heavy engineering. With a visual workflow builder and multi-agent orchestration, StackAI enables full automation from knowledge retrieval to approvals and reporting. Enterprise data sources like SharePoint, Confluence, Notion, Google Drive, and internal databases can be connected with versioning, citations, and access controls to protect sensitive information. AI agents can be deployed as chat assistants, advanced forms, or APIs integrated into Slack, Teams, Salesforce, HubSpot, ServiceNow, or custom apps. Security is built in with SSO (Okta, Azure AD, Google), RBAC, audit logs, PII masking, and data residency. Analytics and cost governance let teams track performance, while evaluations and guardrails ensure reliability before production. StackAI also offers model flexibility, routing tasks across OpenAI, Anthropic, Google, or local LLMs with fine-grained controls for accuracy. A template library accelerates adoption with ready-to-use workflows like Contract Analyzer, Support Desk AI Assistant, RFP Response Builder, and Investment Memo Generator. By consolidating fragmented processes into secure, AI-powered workflows, StackAI reduces manual work, speeds decision-making, and empowers teams to build trusted automation at scale.
  • 2
    Lamini Reviews

    Lamini

    Lamini

    $99 per month
    Lamini empowers organizations to transform their proprietary data into advanced LLM capabilities, providing a platform that allows internal software teams to elevate their skills to match those of leading AI teams like OpenAI, all while maintaining the security of their existing systems. It ensures structured outputs accompanied by optimized JSON decoding, features a photographic memory enabled by retrieval-augmented fine-tuning, and enhances accuracy while significantly minimizing hallucinations. Additionally, it offers highly parallelized inference for processing large batches efficiently and supports parameter-efficient fine-tuning that scales to millions of production adapters. Uniquely, Lamini stands out as the sole provider that allows enterprises to safely and swiftly create and manage their own LLMs in any environment. The company harnesses cutting-edge technologies and research that contributed to the development of ChatGPT from GPT-3 and GitHub Copilot from Codex. Among these advancements are fine-tuning, reinforcement learning from human feedback (RLHF), retrieval-augmented training, data augmentation, and GPU optimization, which collectively enhance the capabilities of AI solutions. Consequently, Lamini positions itself as a crucial partner for businesses looking to innovate and gain a competitive edge in the AI landscape.
  • 3
    LLMWare.ai Reviews
    Our research initiatives in the open-source realm concentrate on developing innovative middleware and software designed to surround and unify large language models (LLMs), alongside creating high-quality enterprise models aimed at automation, all of which are accessible through Hugging Face. LLMWare offers a well-structured, integrated, and efficient development framework within an open system, serving as a solid groundwork for crafting LLM-based applications tailored for AI Agent workflows, Retrieval Augmented Generation (RAG), and a variety of other applications, while also including essential components that enable developers to begin their projects immediately. The framework has been meticulously constructed from the ground up to address the intricate requirements of data-sensitive enterprise applications. You can either utilize our pre-built specialized LLMs tailored to your sector or opt for a customized solution, where we fine-tune an LLM to meet specific use cases and domains. With a comprehensive AI framework, specialized models, and seamless implementation, we deliver a holistic solution that caters to a broad range of enterprise needs. This ensures that no matter your industry, we have the tools and expertise to support your innovative projects effectively.
  • 4
    Bakery Reviews
    Easily tweak and profit from your AI models with just a single click. Designed for AI startups, machine learning engineers, and researchers, Bakery is an innovative platform that simplifies the process of fine-tuning and monetizing AI models. Users can either create new datasets or upload existing ones, modify model parameters, and share their models on a dedicated marketplace. The platform accommodates a broad range of model types and offers access to community-curated datasets to aid in project creation. Bakery’s fine-tuning process is optimized for efficiency, allowing users to construct, evaluate, and deploy models seamlessly. Additionally, the platform integrates with tools such as Hugging Face and supports decentralized storage options, promoting adaptability and growth for various AI initiatives. Bakery also fosters a collaborative environment where contributors can work together on AI models while keeping their model parameters and data confidential. This approach guarantees accurate attribution and equitable revenue sharing among all participants, enhancing the overall collaborative experience in AI development. The platform's user-friendly interface further ensures that even those new to AI can navigate the complexities of model fine-tuning and monetization with ease.
  • 5
    Axolotl Reviews
    Axolotl is an innovative open-source tool crafted to enhance the fine-tuning process of a variety of AI models, accommodating numerous configurations and architectures. This platform empowers users to train models using diverse methods such as full fine-tuning, LoRA, QLoRA, ReLoRA, and GPTQ. Additionally, users have the flexibility to customize their configurations through straightforward YAML files or by employing command-line interface overrides, while also being able to load datasets in various formats, whether custom or pre-tokenized. Axolotl seamlessly integrates with cutting-edge technologies, including xFormers, Flash Attention, Liger kernel, RoPE scaling, and multipacking, and it is capable of operating on single or multiple GPUs using Fully Sharded Data Parallel (FSDP) or DeepSpeed. Whether run locally or in the cloud via Docker, it offers robust support for logging results and saving checkpoints to multiple platforms, ensuring users can easily track their progress. Ultimately, Axolotl aims to make the fine-tuning of AI models not only efficient but also enjoyable, all while maintaining a high level of functionality and scalability. With its user-friendly design, it invites both novices and experienced practitioners to explore the depths of AI model training.
  • 6
    FriendliAI Reviews

    FriendliAI

    FriendliAI

    $5.9 per hour
    FriendliAI serves as an advanced generative AI infrastructure platform that delivers rapid, efficient, and dependable inference solutions tailored for production settings. The platform is equipped with an array of tools and services aimed at refining the deployment and operation of large language models (LLMs) alongside various generative AI tasks on a large scale. Among its key features is Friendli Endpoints, which empowers users to create and implement custom generative AI models, thereby reducing GPU expenses and hastening AI inference processes. Additionally, it facilitates smooth integration with well-known open-source models available on the Hugging Face Hub, ensuring exceptionally fast and high-performance inference capabilities. FriendliAI incorporates state-of-the-art technologies, including Iteration Batching, the Friendli DNN Library, Friendli TCache, and Native Quantization, all of which lead to impressive cost reductions (ranging from 50% to 90%), a significant decrease in GPU demands (up to 6 times fewer GPUs), enhanced throughput (up to 10.7 times), and a marked decrease in latency (up to 6.2 times). With its innovative approach, FriendliAI positions itself as a key player in the evolving landscape of generative AI solutions.
  • 7
    Label Studio Reviews
    Introducing the ultimate data annotation tool that offers unparalleled flexibility and ease of installation. Users can create customized user interfaces or opt for ready-made labeling templates tailored to their specific needs. The adaptable layouts and templates seamlessly integrate with your dataset and workflow requirements. It supports various object detection methods in images, including boxes, polygons, circles, and key points, and allows for the segmentation of images into numerous parts. Additionally, machine learning models can be utilized to pre-label data and enhance efficiency throughout the annotation process. Features such as webhooks, a Python SDK, and an API enable users to authenticate, initiate projects, import tasks, and manage model predictions effortlessly. Save valuable time by leveraging predictions to streamline your labeling tasks, thanks to the integration with ML backends. Furthermore, users can connect to cloud object storage solutions like S3 and GCP to label data directly in the cloud. The Data Manager equips you with advanced filtering options to effectively prepare and oversee your dataset. This platform accommodates multiple projects, diverse use cases, and various data types, all in one convenient space. By simply typing in the configuration, you can instantly preview the labeling interface. Live serialization updates at the bottom of the page provide a real-time view of what Label Studio anticipates as input, ensuring a smooth user experience. This tool not only improves annotation accuracy but also fosters collaboration among teams working on similar projects.
  • 8
    Haystack Reviews
    Leverage cutting-edge NLP advancements by utilizing Haystack's pipeline architecture on your own datasets. You can create robust solutions for semantic search, question answering, summarization, and document ranking, catering to a diverse array of NLP needs. Assess various components and refine models for optimal performance. Interact with your data in natural language, receiving detailed answers from your documents through advanced QA models integrated within Haystack pipelines. Conduct semantic searches that prioritize meaning over mere keyword matching, enabling a more intuitive retrieval of information. Explore and evaluate the latest pre-trained transformer models, including OpenAI's GPT-3, BERT, RoBERTa, and DPR, among others. Develop semantic search and question-answering systems that are capable of scaling to accommodate millions of documents effortlessly. The framework provides essential components for the entire product development lifecycle, such as file conversion tools, indexing capabilities, model training resources, annotation tools, domain adaptation features, and a REST API for seamless integration. This comprehensive approach ensures that you can meet various user demands and enhance the overall efficiency of your NLP applications.
  • 9
    Simplismart Reviews
    Enhance and launch AI models using Simplismart's ultra-fast inference engine. Seamlessly connect with major cloud platforms like AWS, Azure, GCP, and others for straightforward, scalable, and budget-friendly deployment options. Easily import open-source models from widely-used online repositories or utilize your personalized custom model. You can opt to utilize your own cloud resources or allow Simplismart to manage your model hosting. With Simplismart, you can go beyond just deploying AI models; you have the capability to train, deploy, and monitor any machine learning model, achieving improved inference speeds while minimizing costs. Import any dataset for quick fine-tuning of both open-source and custom models. Efficiently conduct multiple training experiments in parallel to enhance your workflow, and deploy any model on our endpoints or within your own VPC or on-premises to experience superior performance at reduced costs. The process of streamlined and user-friendly deployment is now achievable. You can also track GPU usage and monitor all your node clusters from a single dashboard, enabling you to identify any resource limitations or model inefficiencies promptly. This comprehensive approach to AI model management ensures that you can maximize your operational efficiency and effectiveness.
  • 10
    Amazon EC2 Trn2 Instances Reviews
    Amazon EC2 Trn2 instances, equipped with AWS Trainium2 chips, are specifically designed to deliver exceptional performance in the training of generative AI models, such as large language and diffusion models. Users can experience cost savings of up to 50% in training expenses compared to other Amazon EC2 instances. These Trn2 instances can accommodate as many as 16 Trainium2 accelerators, boasting an impressive compute power of up to 3 petaflops using FP16/BF16 and 512 GB of high-bandwidth memory. For enhanced data and model parallelism, they are built with NeuronLink, a high-speed, nonblocking interconnect, and offer a substantial network bandwidth of up to 1600 Gbps via the second-generation Elastic Fabric Adapter (EFAv2). Trn2 instances are part of EC2 UltraClusters, which allow for scaling up to 30,000 interconnected Trainium2 chips within a nonblocking petabit-scale network, achieving a remarkable 6 exaflops of compute capability. Additionally, the AWS Neuron SDK provides seamless integration with widely used machine learning frameworks, including PyTorch and TensorFlow, making these instances a powerful choice for developers and researchers alike. This combination of cutting-edge technology and cost efficiency positions Trn2 instances as a leading option in the realm of high-performance deep learning.
  • 11
    Intel Open Edge Platform Reviews
    The Intel Open Edge Platform streamlines the process of developing, deploying, and scaling AI and edge computing solutions using conventional hardware while achieving cloud-like efficiency. It offers a carefully selected array of components and workflows designed to expedite the creation, optimization, and development of AI models. Covering a range of applications from vision models to generative AI and large language models, the platform equips developers with the necessary tools to facilitate seamless model training and inference. By incorporating Intel’s OpenVINO toolkit, it guarantees improved performance across Intel CPUs, GPUs, and VPUs, enabling organizations to effortlessly implement AI applications at the edge. This comprehensive approach not only enhances productivity but also fosters innovation in the rapidly evolving landscape of edge computing.
  • 12
    Cake AI Reviews
    Cake AI serves as a robust infrastructure platform designed for teams to effortlessly create and launch AI applications by utilizing a multitude of pre-integrated open source components, ensuring full transparency and governance. It offers a carefully curated, all-encompassing suite of top-tier commercial and open source AI tools that come with ready-made integrations, facilitating the transition of AI applications into production seamlessly. The platform boasts features such as dynamic autoscaling capabilities, extensive security protocols including role-based access and encryption, as well as advanced monitoring tools and adaptable infrastructure that can operate across various settings, from Kubernetes clusters to cloud platforms like AWS. Additionally, its data layer is equipped with essential tools for data ingestion, transformation, and analytics, incorporating technologies such as Airflow, DBT, Prefect, Metabase, and Superset to enhance data management. For effective AI operations, Cake seamlessly connects with model catalogs like Hugging Face and supports versatile workflows through tools such as LangChain and LlamaIndex, allowing teams to customize their processes efficiently. This comprehensive ecosystem empowers organizations to innovate and deploy AI solutions with greater agility and precision.
  • 13
    Tune AI Reviews
    Harness the capabilities of tailored models to gain a strategic edge in your market. With our advanced enterprise Gen AI framework, you can surpass conventional limits and delegate repetitive tasks to robust assistants in real time – the possibilities are endless. For businesses that prioritize data protection, customize and implement generative AI solutions within your own secure cloud environment, ensuring safety and confidentiality at every step.
  • Previous
  • You're on page 1
  • Next