Atla serves as a comprehensive observability and evaluation platform tailored for AI agents, focusing on diagnosing and resolving failures effectively. It enables real-time insights into every decision, tool utilization, and interaction, allowing users to track each agent's execution, comprehend errors at each step, and pinpoint the underlying causes of failures. By intelligently identifying recurring issues across a vast array of traces, Atla eliminates the need for tedious manual log reviews and offers concrete, actionable recommendations for enhancements based on observed error trends. Users can concurrently test different models and prompts to assess their performance, apply suggested improvements, and evaluate the impact of modifications on success rates. Each individual trace is distilled into clear, concise narratives for detailed examination, while aggregated data reveals overarching patterns that highlight systemic challenges rather than mere isolated incidents. Additionally, Atla is designed for seamless integration with existing tools such as OpenAI, LangChain, Autogen AI, Pydantic AI, and several others, ensuring a smooth user experience. This platform not only enhances the efficiency of AI agents but also empowers users with the insights needed to drive continuous improvement and innovation.