Best AI Development Platforms for Phi-2

Find and compare the best AI Development platforms for Phi-2 in 2025

Use the comparison tool below to compare the top AI Development platforms for Phi-2 on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    LM-Kit.NET Reviews
    Top Pick

    LM-Kit

    Free (Community) or $1000/year
    16 Ratings
    See Platform
    Learn More
    Developers can seamlessly integrate sophisticated generative AI capabilities into their .NET applications with minimal configuration. This enables functionalities such as chatbots, text creation, content discovery, natural language understanding, translation, and extracting structured information. The on-device inference leverages a combination of CPU and GPU acceleration for swift local processing, ensuring data security. Regular updates incorporate the latest advancements in research, allowing teams to create secure, high-performance AI solutions while enjoying an efficient development process and comprehensive oversight.
  • 2
    RunPod Reviews

    RunPod

    RunPod

    $0.40 per hour
    141 Ratings
    See Platform
    Learn More
    RunPod provides a cloud infrastructure that enables seamless deployment and scaling of AI workloads with GPU-powered pods. By offering access to a wide array of NVIDIA GPUs, such as the A100 and H100, RunPod supports training and deploying machine learning models with minimal latency and high performance. The platform emphasizes ease of use, allowing users to spin up pods in seconds and scale them dynamically to meet demand. With features like autoscaling, real-time analytics, and serverless scaling, RunPod is an ideal solution for startups, academic institutions, and enterprises seeking a flexible, powerful, and affordable platform for AI development and inference.
  • 3
    Airtrain Reviews
    Explore and analyze a wide array of both open-source and proprietary AI models simultaneously. Replace expensive APIs with affordable custom AI solutions tailored for your needs. Adapt foundational models using your private data to ensure they meet your specific requirements. Smaller fine-tuned models can rival the performance of GPT-4 while being up to 90% more cost-effective. With Airtrain’s LLM-assisted scoring system, model assessment becomes straightforward by utilizing your task descriptions. You can deploy your personalized models through the Airtrain API, whether in the cloud or within your own secure environment. Assess and contrast both open-source and proprietary models throughout your complete dataset, focusing on custom attributes. Airtrain’s advanced AI evaluators enable you to score models based on various metrics for a completely tailored evaluation process. Discover which model produces outputs that comply with the JSON schema needed for your agents and applications. Your dataset will be evaluated against models using independent metrics that include length, compression, and coverage, ensuring a comprehensive analysis of performance. This way, you can make informed decisions based on your unique needs and operational context.
  • 4
    Oumi Reviews
    Oumi is an entirely open-source platform that enhances the complete lifecycle of foundation models, encompassing everything from data preparation and training to evaluation and deployment. It facilitates the training and fine-tuning of models with parameter counts ranging from 10 million to an impressive 405 billion, utilizing cutting-edge methodologies such as SFT, LoRA, QLoRA, and DPO. Supporting both text-based and multimodal models, Oumi is compatible with various architectures like Llama, DeepSeek, Qwen, and Phi. The platform also includes tools for data synthesis and curation, allowing users to efficiently create and manage their training datasets. For deployment, Oumi seamlessly integrates with well-known inference engines such as vLLM and SGLang, which optimizes model serving. Additionally, it features thorough evaluation tools across standard benchmarks to accurately measure model performance. Oumi's design prioritizes flexibility, enabling it to operate in diverse environments ranging from personal laptops to powerful cloud solutions like AWS, Azure, GCP, and Lambda, making it a versatile choice for developers. This adaptability ensures that users can leverage the platform regardless of their operational context, enhancing its appeal across different use cases.
  • Previous
  • You're on page 1
  • Next