Best AI Development Platforms for Keras

Find and compare the best AI Development platforms for Keras in 2024

Use the comparison tool below to compare the top AI Development platforms for Keras on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    TensorFlow Reviews
    Open source platform for machine learning. TensorFlow is a machine learning platform that is open-source and available to all. It offers a flexible, comprehensive ecosystem of tools, libraries, and community resources that allows researchers to push the boundaries of machine learning. Developers can easily create and deploy ML-powered applications using its tools. Easy ML model training and development using high-level APIs such as Keras. This allows for quick model iteration and debugging. No matter what language you choose, you can easily train and deploy models in cloud, browser, on-prem, or on-device. It is a simple and flexible architecture that allows you to quickly take new ideas from concept to code to state-of the-art models and publication. TensorFlow makes it easy to build, deploy, and test.
  • 2
    RazorThink Reviews
    RZT aiOS provides all the benefits of a unified AI platform, and more. It's not just a platform, it's an Operating System that connects, manages, and unifies all your AI initiatives. AI developers can now do what used to take months in days thanks to aiOS process management which dramatically increases their productivity. This Operating System provides an intuitive environment for AI development. It allows you to visually build models, explore data and create processing pipelines. You can also run experiments and view analytics. It's easy to do all of this without any advanced software engineering skills.
  • 3
    BentoML Reviews
    Your ML model can be served in minutes in any cloud. Unified model packaging format that allows online and offline delivery on any platform. Our micro-batching technology allows for 100x more throughput than a regular flask-based server model server. High-quality prediction services that can speak the DevOps language, and seamlessly integrate with common infrastructure tools. Unified format for deployment. High-performance model serving. Best practices in DevOps are incorporated. The service uses the TensorFlow framework and the BERT model to predict the sentiment of movie reviews. DevOps-free BentoML workflow. This includes deployment automation, prediction service registry, and endpoint monitoring. All this is done automatically for your team. This is a solid foundation for serious ML workloads in production. Keep your team's models, deployments and changes visible. You can also control access via SSO and RBAC, client authentication and auditing logs.
  • 4
    Cameralyze Reviews

    Cameralyze

    Cameralyze

    $29 per month
    Empower your product with AI. Our platform provides a wide range of pre-built models, as well as a user-friendly interface with no-code for custom models. Integrate AI seamlessly into applications to gain a competitive advantage. Sentiment analysis is also known as opinion-mining. It is the process of extracting and categorizing subjective information from text, such as reviews, comments on social media, or customer feedback. In recent years, this technology has grown in importance as more companies use it to understand the opinions and needs of their customers and make data-driven decision that can improve products, services, or marketing strategies. Sentiment analysis helps companies to understand customer feedback, and make data-driven decision that can improve their products, service, and marketing strategies.
  • 5
    Akira AI Reviews

    Akira AI

    Akira AI

    $15 per month
    Akira AI provides the best explainability, accuracy and scalability in their application. Responsible AI can help you create applications that are transparent, robust, reliable, and fair. Transforming enterprise work with computer vision techniques, machine learning solutions and end-to-end deployment of models. ML model problems can be solved with actionable insights. Build AI systems that are compliant and responsible with proactive bias monitoring capabilities. Open the AI blackbox to optimize and understand the correct inner workings. Intelligent automation-enabled process reduce operational hindrances, and optimize workforce productivity. Build AI-quality AI solutions that optimize, monitor, and explain ML models. Improve performance, transparency and robustness. Model velocity can improve AI outcomes and model performance.
  • 6
    Databricks Data Intelligence Platform Reviews
    The Databricks Data Intelligence Platform enables your entire organization to utilize data and AI. It is built on a lakehouse that provides an open, unified platform for all data and governance. It's powered by a Data Intelligence Engine, which understands the uniqueness in your data. Data and AI companies will win in every industry. Databricks can help you achieve your data and AI goals faster and easier. Databricks combines the benefits of a lakehouse with generative AI to power a Data Intelligence Engine which understands the unique semantics in your data. The Databricks Platform can then optimize performance and manage infrastructure according to the unique needs of your business. The Data Intelligence Engine speaks your organization's native language, making it easy to search for and discover new data. It is just like asking a colleague a question.
  • 7
    cnvrg.io Reviews
    An end-to-end solution gives you all the tools your data science team needs to scale your machine learning development, from research to production. cnvrg.io, the world's leading data science platform for MLOps (model management) is a leader in creating cutting-edge machine-learning development solutions that allow you to build high-impact models in half the time. In a collaborative and clear machine learning management environment, bridge science and engineering teams. Use interactive workspaces, dashboards and model repositories to communicate and reproduce results. You should be less concerned about technical complexity and more focused on creating high-impact ML models. The Cnvrg.io container based infrastructure simplifies engineering heavy tasks such as tracking, monitoring and configuration, compute resource management, server infrastructure, feature extraction, model deployment, and serving infrastructure.
  • 8
    Graphcore Reviews
    With our cloud partners, you can build, train, and deploy your models in cloud using the most recent IPU AI systems and frameworks. This allows you to scale up to large IPU compute seamlessly, while saving on compute costs. Get started with IPUs today by getting on-demand pricing and tiers free of charge from our cloud partners. Our Intelligence Processing Unit (IPU), technology is expected to become the global standard for machine intelligence computing. The Graphcore IPU will have a transformative impact across all industries and sectors. It has the potential to have a real positive societal impact, from drug discovery to disaster recovery to decarbonization. The IPU is an entirely new processor that was specifically designed for AI computation. AI researchers can use the IPU's unique architecture to do completely new types of work that are not possible with current technologies. This will allow them to drive the next generation in machine intelligence.
  • 9
    Unremot Reviews
    Unremot is the place to go for anyone who wants to build an AI-based product. With 120+ pre-built AIs, you can launch AI products at 1/3rd of the cost and 2X faster. Even the most complex AI product APIs can be launched and deployed in less than a minute, with minimal or no code. Unremot offers 120+ APIs. Choose the AI API you want to integrate into your product. Unremot will need your API private key in order to authenticate. Unremot's unique URL is the fastest way to connect your product API. The process can take minutes instead of days or weeks.
  • Previous
  • You're on page 1
  • Next