Compare the Top AI Coding Models using the curated list below to find the Best AI Coding Models for your needs.
-
1
ChatGPT by OpenAI is a versatile AI conversational platform that provides assistance in writing, learning, brainstorming, code generation, and problem-solving across a wide range of topics. Available for free with optional Plus and Pro subscription plans, it supports real-time text and voice interactions on web browsers and mobile apps. Users can leverage ChatGPT to create content, summarize meetings, debug code, analyze data, and even generate images using integrated tools like DALL·E 3. The platform is accessible via desktop and mobile devices and offers personalized workflows through custom GPTs and projects. Advanced plans unlock deeper research capabilities, extended limits, and access to cutting-edge AI models like GPT-4o and OpenAI o1 pro mode. ChatGPT integrates search capabilities for real-time information and enables collaboration through features like Canvas for project editing. It caters to students, professionals, hobbyists, and developers seeking efficient, AI-driven support. OpenAI continually updates ChatGPT with new tools and enhanced usability.
-
2
Gemini, an innovative AI chatbot from Google, aims to boost creativity and productivity through engaging conversations in natural language. Available on both web and mobile platforms, it works harmoniously with multiple Google services like Docs, Drive, and Gmail, allowing users to create content, condense information, and handle tasks effectively. With its multimodal abilities, Gemini can analyze and produce various forms of data, including text, images, and audio, which enables it to deliver thorough support in numerous scenarios. As it continually learns from user engagement, Gemini customizes its responses to provide personalized and context-sensitive assistance, catering to diverse user requirements. Moreover, this adaptability ensures that it evolves alongside its users, making it a valuable tool for anyone looking to enhance their workflow and creativity.
-
3
Gemini Advanced
Google
$19.99 per month 1 RatingGemini Advanced represents a state-of-the-art AI model that excels in natural language comprehension, generation, and problem-solving across a variety of fields. With its innovative neural architecture, it provides remarkable accuracy, sophisticated contextual understanding, and profound reasoning abilities. This advanced system is purpose-built to tackle intricate and layered tasks, which include generating comprehensive technical documentation, coding, performing exhaustive data analysis, and delivering strategic perspectives. Its flexibility and ability to scale make it an invaluable resource for both individual practitioners and large organizations. By establishing a new benchmark for intelligence, creativity, and dependability in AI-driven solutions, Gemini Advanced is set to transform various industries. Additionally, users will gain access to Gemini in platforms like Gmail and Docs, along with 2 TB of storage and other perks from Google One, enhancing overall productivity. Furthermore, Gemini Advanced facilitates access to Gemini with Deep Research, enabling users to engage in thorough and instantaneous research on virtually any topic. -
4
Mistral AI
Mistral AI
Free 1 RatingMistral AI stands out as an innovative startup in the realm of artificial intelligence, focusing on open-source generative solutions. The company provides a diverse array of customizable, enterprise-level AI offerings that can be implemented on various platforms, such as on-premises, cloud, edge, and devices. Among its key products are "Le Chat," a multilingual AI assistant aimed at boosting productivity in both personal and professional settings, and "La Plateforme," a platform for developers that facilitates the creation and deployment of AI-driven applications. With a strong commitment to transparency and cutting-edge innovation, Mistral AI has established itself as a prominent independent AI laboratory, actively contributing to the advancement of open-source AI and influencing policy discussions. Their dedication to fostering an open AI ecosystem underscores their role as a thought leader in the industry. -
5
Claude represents a sophisticated artificial intelligence language model capable of understanding and producing text that resembles human communication. Anthropic is an organization dedicated to AI safety and research, aiming to develop AI systems that are not only dependable and understandable but also controllable. While contemporary large-scale AI systems offer considerable advantages, they also present challenges such as unpredictability and lack of transparency; thus, our mission is to address these concerns. Currently, our primary emphasis lies in advancing research to tackle these issues effectively; however, we anticipate numerous opportunities in the future where our efforts could yield both commercial value and societal benefits. As we continue our journey, we remain committed to enhancing the safety and usability of AI technologies.
-
6
BLACKBOX AI
BLACKBOX AI
Free 1 RatingBLACKBOX AI is a powerful AI-driven platform that revolutionizes software development by providing a fully integrated AI Coding Agent with unique features such as voice interaction, direct GPU access, and remote parallel task processing. It simplifies complex coding tasks by converting Figma designs into production-ready code and transforming images into web apps with minimal manual effort. The platform supports seamless screen sharing within popular IDEs like VSCode, enhancing developer collaboration. Users can manage GitHub repositories remotely, running coding tasks entirely in the cloud for scalability and efficiency. BLACKBOX AI also enables app development with embedded PDF context, allowing the AI agent to understand and build around complex document data. Its image generation and editing tools offer creative flexibility alongside development features. The platform supports mobile device access, ensuring developers can work from anywhere. BLACKBOX AI aims to speed up the entire development lifecycle with automation and AI-enhanced workflows. -
7
GPT-4o, with the "o" denoting "omni," represents a significant advancement in the realm of human-computer interaction by accommodating various input types such as text, audio, images, and video, while also producing outputs across these same formats. Its capability to process audio inputs allows for responses in as little as 232 milliseconds, averaging 320 milliseconds, which closely resembles the response times seen in human conversations. In terms of performance, it maintains the efficiency of GPT-4 Turbo for English text and coding while showing marked enhancements in handling text in other languages, all while operating at a much faster pace and at a cost that is 50% lower via the API. Furthermore, GPT-4o excels in its ability to comprehend vision and audio, surpassing the capabilities of its predecessors, making it a powerful tool for multi-modal interactions. This innovative model not only streamlines communication but also broadens the possibilities for applications in diverse fields.
-
8
DeepSeek Coder
DeepSeek
Free 1 RatingDeepSeek Coder is an innovative software solution poised to transform the realm of data analysis and programming. By harnessing state-of-the-art machine learning techniques and natural language processing, it allows users to effortlessly incorporate data querying, analysis, and visualization into their daily tasks. The user-friendly interface caters to both beginners and seasoned developers, making the writing, testing, and optimization of code a straightforward process. Among its impressive features are real-time syntax validation, smart code suggestions, and thorough debugging capabilities, all aimed at enhancing productivity in coding. Furthermore, DeepSeek Coder’s proficiency in deciphering intricate data sets enables users to extract valuable insights and develop advanced data-centric applications with confidence. Ultimately, its combination of powerful tools and ease of use positions DeepSeek Coder as an essential asset for anyone engaged in data-driven projects. -
9
Claude Sonnet 3.5
Anthropic
Free 1 RatingClaude Sonnet 3.5 sets a new standard for AI performance with outstanding benchmarks in graduate-level reasoning (GPQA), undergraduate-level knowledge (MMLU), and coding proficiency (HumanEval). This model shows significant improvements in understanding nuance, humor, and complex instructions, while consistently producing high-quality content that resonates naturally with users. Operating at twice the speed of Claude Opus 3, it delivers faster and more efficient results, making it perfect for use cases such as context-sensitive customer support and multi-step workflow automation. Claude Sonnet 3.5 is available for free on Claude.ai and the Claude iOS app, with higher rate limits for Claude Pro and Team plan subscribers. It’s also accessible through the Anthropic API, Amazon Bedrock, and Google Cloud’s Vertex AI, making it an accessible and cost-effective choice for businesses and developers. -
10
Claude Opus 3
Anthropic
Free 1 RatingOpus, recognized as our most advanced model, surpasses its competitors in numerous widely-used evaluation benchmarks for artificial intelligence, including assessments of undergraduate expert knowledge (MMLU), graduate-level reasoning (GPQA), fundamental mathematics (GSM8K), and others. Its performance approaches human-like comprehension and fluency in handling intricate tasks, positioning it at the forefront of general intelligence advancements. Furthermore, all Claude 3 models demonstrate enhanced abilities in analysis and prediction, sophisticated content creation, programming code generation, and engaging in conversations in various non-English languages such as Spanish, Japanese, and French, showcasing their versatility in communication. -
11
Grok-3, created by xAI, signifies a major leap forward in artificial intelligence technology, with aspirations to establish new standards in AI performance. This model is engineered as a multimodal AI, enabling it to interpret and analyze information from diverse channels such as text, images, and audio, thereby facilitating a more holistic interaction experience for users. Grok-3 is constructed on an unprecedented scale, utilizing tenfold the computational resources of its predecessor, harnessing the power of 100,000 Nvidia H100 GPUs within the Colossus supercomputer. Such remarkable computational capabilities are expected to significantly boost Grok-3's effectiveness across various domains, including reasoning, coding, and the real-time analysis of ongoing events by directly referencing X posts. With these advancements, Grok-3 is poised to not only surpass its previous iterations but also rival other prominent AI systems in the generative AI ecosystem, potentially reshaping user expectations and capabilities in the field. The implications of Grok-3's performance could redefine how AI is integrated into everyday applications, paving the way for more sophisticated technological solutions.
-
12
GPT-4.5 represents a significant advancement in AI technology, building on previous models by expanding its unsupervised learning techniques, refining its reasoning skills, and enhancing its collaborative features. This model is crafted to better comprehend human intentions and engage in more natural and intuitive interactions, resulting in greater accuracy and reduced hallucination occurrences across various subjects. Its sophisticated functions allow for the creation of imaginative and thought-provoking content, facilitate the resolution of intricate challenges, and provide support in various fields such as writing, design, and even space exploration. Furthermore, the model's enhanced ability to interact with humans paves the way for practical uses, ensuring that it is both more accessible and dependable for businesses and developers alike. By continually evolving, GPT-4.5 sets a new standard for how AI can assist in diverse applications and industries.
-
13
Claude Sonnet 3.7
Anthropic
Free 1 RatingClaude Sonnet 3.7, a state-of-the-art AI model by Anthropic, is designed for versatility, offering users the option to switch between quick, efficient responses and deeper, more reflective answers. This dynamic model shines in complex problem-solving scenarios, where high-level reasoning and nuanced understanding are crucial. By allowing Claude to pause for self-reflection before answering, Sonnet 3.7 excels in tasks that demand deep analysis, such as coding, natural language processing, and critical thinking applications. Its flexibility makes it an invaluable tool for professionals and organizations looking for an adaptable AI that delivers both speed and thoughtful insights. -
14
ChatGPT Plus
OpenAI
$20 per month 1 RatingWe have developed a model known as ChatGPT that engages users in dialogue. This conversational structure allows ChatGPT to effectively respond to follow-up inquiries, acknowledge errors, question faulty assumptions, and decline unsuitable requests. InstructGPT, a related model, focuses on adhering to specific instructions given in prompts and delivering comprehensive answers. ChatGPT Plus is a premium subscription service designed for ChatGPT, the conversational AI. The subscription costs $20 per month, offering subscribers several advantages: - Uninterrupted access to ChatGPT, even during high-demand periods - Accelerated response times - Access to GPT-4 - Integration of ChatGPT plugins - Capability for web-browsing with ChatGPT - Priority for new features and enhancements Currently, ChatGPT Plus is accessible to users in the United States, with plans to gradually invite individuals from our waitlist in the upcoming weeks. We also aim to broaden access and support to more countries and regions in the near future, ensuring that a wider audience can experience its benefits. -
15
Qwen LLM represents a collection of advanced large language models created by Alibaba Cloud's Damo Academy. These models leverage an extensive dataset comprising text and code, enabling them to produce human-like text, facilitate language translation, craft various forms of creative content, and provide informative answers to queries. Key attributes of Qwen LLMs include: A range of sizes: The Qwen series features models with parameters varying from 1.8 billion to 72 billion, catering to diverse performance requirements and applications. Open source availability: Certain versions of Qwen are open-source, allowing users to access and modify the underlying code as needed. Multilingual capabilities: Qwen is equipped to comprehend and translate several languages, including English, Chinese, and French. Versatile functionalities: In addition to language generation and translation, Qwen models excel in tasks such as answering questions, summarizing texts, and generating code, making them highly adaptable tools for various applications. Overall, the Qwen LLM family stands out for its extensive capabilities and flexibility in meeting user needs.
-
16
GPT-4o mini
OpenAI
1 RatingA compact model that excels in textual understanding and multimodal reasoning capabilities. The GPT-4o mini is designed to handle a wide array of tasks efficiently, thanks to its low cost and minimal latency, making it ideal for applications that require chaining or parallelizing multiple model calls, such as invoking several APIs simultaneously, processing extensive context like entire codebases or conversation histories, and providing swift, real-time text interactions for customer support chatbots. Currently, the API for GPT-4o mini accommodates both text and visual inputs, with plans to introduce support for text, images, videos, and audio in future updates. This model boasts an impressive context window of 128K tokens and can generate up to 16K output tokens per request, while its knowledge base is current as of October 2023. Additionally, the enhanced tokenizer shared with GPT-4o has made it more efficient in processing non-English text, further broadening its usability for diverse applications. As a result, GPT-4o mini stands out as a versatile tool for developers and businesses alike. -
17
OpenAI's o1-pro represents a more advanced iteration of the initial o1 model, specifically crafted to address intricate and challenging tasks with increased dependability. This upgraded model showcases considerable enhancements compared to the earlier o1 preview, boasting a remarkable 34% decline in significant errors while also demonstrating a 50% increase in processing speed. It stands out in disciplines such as mathematics, physics, and programming, where it delivers thorough and precise solutions. Furthermore, the o1-pro is capable of managing multimodal inputs, such as text and images, and excels in complex reasoning tasks that necessitate profound analytical skills. Available through a ChatGPT Pro subscription, this model not only provides unlimited access but also offers improved functionalities for users seeking sophisticated AI support. In this way, users can leverage its advanced capabilities to solve a wider range of problems efficiently and effectively.
-
18
Gemini 2.0
Google
Free 1 RatingGemini 2.0 represents a cutting-edge AI model created by Google, aimed at delivering revolutionary advancements in natural language comprehension, reasoning abilities, and multimodal communication. This new version builds upon the achievements of its earlier model by combining extensive language processing with superior problem-solving and decision-making skills, allowing it to interpret and produce human-like responses with enhanced precision and subtlety. In contrast to conventional AI systems, Gemini 2.0 is designed to simultaneously manage diverse data formats, such as text, images, and code, rendering it an adaptable asset for sectors like research, business, education, and the arts. Key enhancements in this model include improved contextual awareness, minimized bias, and a streamlined architecture that guarantees quicker and more consistent results. As a significant leap forward in the AI landscape, Gemini 2.0 is set to redefine the nature of human-computer interactions, paving the way for even more sophisticated applications in the future. Its innovative features not only enhance user experience but also facilitate more complex and dynamic engagements across various fields. -
19
DeepSeek R1
DeepSeek
Free 1 RatingDeepSeek-R1 is a cutting-edge open-source reasoning model created by DeepSeek, aimed at competing with OpenAI's Model o1. It is readily available through web, app, and API interfaces, showcasing its proficiency in challenging tasks such as mathematics and coding, and achieving impressive results on assessments like the American Invitational Mathematics Examination (AIME) and MATH. Utilizing a mixture of experts (MoE) architecture, this model boasts a remarkable total of 671 billion parameters, with 37 billion parameters activated for each token, which allows for both efficient and precise reasoning abilities. As a part of DeepSeek's dedication to the progression of artificial general intelligence (AGI), the model underscores the importance of open-source innovation in this field. Furthermore, its advanced capabilities may significantly impact how we approach complex problem-solving in various domains. -
20
Grok 3 Think
xAI
Free 1 RatingGrok 3 Think, the newest version of xAI's AI model, aims to significantly improve reasoning skills through sophisticated reinforcement learning techniques. It possesses the ability to analyze intricate issues for durations ranging from mere seconds to several minutes, enhancing its responses by revisiting previous steps, considering different options, and fine-tuning its strategies. This model has been developed on an unparalleled scale, showcasing outstanding proficiency in various tasks, including mathematics, programming, and general knowledge, and achieving notable success in competitions such as the American Invitational Mathematics Examination. Additionally, Grok 3 Think not only yields precise answers but also promotes transparency by enabling users to delve into the rationale behind its conclusions, thereby establishing a new benchmark for artificial intelligence in problem-solving. Its unique approach to transparency and reasoning offers users greater trust and understanding of AI decision-making processes. -
21
Gemini 2.5 Pro represents a cutting-edge AI model tailored for tackling intricate tasks, showcasing superior reasoning and coding skills. It stands out in various benchmarks, particularly in mathematics, science, and programming, where it demonstrates remarkable efficacy in activities such as web application development and code conversion. Building on the Gemini 2.5 framework, this model boasts a context window of 1 million tokens, allowing it to efficiently manage extensive datasets from diverse origins, including text, images, and code libraries. Now accessible through Google AI Studio, Gemini 2.5 Pro is fine-tuned for more advanced applications, catering to expert users with enhanced capabilities for solving complex challenges. Furthermore, its design reflects a commitment to pushing the boundaries of AI's potential in real-world scenarios.
-
22
OpenAI's o1 series introduces a new generation of AI models specifically developed to enhance reasoning skills. Among these models are o1-preview and o1-mini, which utilize an innovative reinforcement learning technique that encourages them to dedicate more time to "thinking" through various problems before delivering solutions. This method enables the o1 models to perform exceptionally well in intricate problem-solving scenarios, particularly in fields such as coding, mathematics, and science, and they have shown to surpass earlier models like GPT-4o in specific benchmarks. The o1 series is designed to address challenges that necessitate more profound cognitive processes, representing a pivotal advancement toward AI systems capable of reasoning in a manner similar to humans. As it currently stands, the series is still undergoing enhancements and assessments, reflecting OpenAI's commitment to refining these technologies further. The continuous development of the o1 models highlights the potential for AI to evolve and meet more complex demands in the future.
-
23
OpenAI o1-mini
OpenAI
1 RatingThe o1-mini from OpenAI is an innovative and budget-friendly AI model that specializes in improved reasoning capabilities, especially in STEM areas such as mathematics and programming. As a member of the o1 series, it aims to tackle intricate challenges by allocating more time to analyze and contemplate solutions. Although it is smaller in size and costs 80% less than its counterpart, the o1-preview, the o1-mini remains highly effective in both coding assignments and mathematical reasoning. This makes it an appealing choice for developers and businesses that seek efficient and reliable AI solutions. Furthermore, its affordability does not compromise its performance, allowing a wider range of users to benefit from advanced AI technologies. -
24
As artificial intelligence continues to evolve, its ability to tackle more intricate and vital challenges will expand, necessitating a greater computational power to support these advancements. The ChatGPT Pro subscription, priced at $200 per month, offers extensive access to OpenAI's premier models and tools, including unrestricted use of the advanced OpenAI o1 model, o1-mini, GPT-4o, and Advanced Voice features. This subscription also grants users access to the o1 pro mode, an enhanced version of o1 that utilizes increased computational resources to deliver superior answers to more challenging inquiries. Looking ahead, we anticipate the introduction of even more robust, resource-demanding productivity tools within this subscription plan. With ChatGPT Pro, users benefit from a variant of our most sophisticated model capable of extended reasoning, yielding the most dependable responses. External expert evaluations have shown that o1 pro mode consistently generates more accurate and thorough responses, particularly excelling in fields such as data science, programming, and legal case analysis, thereby solidifying its value for professional use. In addition, the commitment to ongoing improvements ensures that subscribers will receive continual updates that enhance their experience and capabilities.
-
25
Claude Haiku 3.5
Anthropic
1 RatingClaude Haiku 3.5 is a game-changing, high-speed model that enhances coding, reasoning, and tool usage, offering the best balance between performance and affordability. This latest version takes the speed of Claude Haiku 3 and improves upon every skill set, surpassing Claude Opus 3 in several intelligence benchmarks. Perfect for developers looking for rapid and effective AI assistance, Haiku 3.5 excels in high-demand environments, processing tasks efficiently while maintaining top-tier performance. Available on the first-party API, Amazon Bedrock, and Google Cloud’s Vertex AI, Haiku 3.5 is initially offered as a text-only model, with future plans for image input integration. -
26
Gemini-Exp-1206
Google
1 RatingGemini-Exp-1206 is a new experimental AI model that is currently being offered for preview exclusively to Gemini Advanced subscribers. This model boasts improved capabilities in handling intricate tasks, including programming, mathematical calculations, logical reasoning, and adhering to comprehensive instructions. Its primary aim is to provide users with enhanced support when tackling complex challenges. As this is an early preview, users may encounter some features that do not operate perfectly, and the model is also without access to real-time data. Access to Gemini-Exp-1206 can be obtained via the Gemini model drop-down menu on both desktop and mobile web platforms, allowing users to experience its advanced functionalities firsthand. -
27
Gemini 1.5 Pro
Google
1 RatingThe Gemini 1.5 Pro AI model represents a pinnacle in language modeling, engineered to produce remarkably precise, context-sensitive, and human-like replies suitable for a wide range of uses. Its innovative neural framework allows it to excel in tasks involving natural language comprehension, generation, and reasoning. This model has been meticulously fine-tuned for adaptability, making it capable of handling diverse activities such as content creation, coding, data analysis, and intricate problem-solving. Its sophisticated algorithms provide a deep understanding of language, allowing for smooth adjustments to various domains and conversational tones. Prioritizing both scalability and efficiency, the Gemini 1.5 Pro is designed to cater to both small applications and large-scale enterprise deployments, establishing itself as an invaluable asset for driving productivity and fostering innovation. Moreover, its ability to learn from user interactions enhances its performance, making it even more effective in real-world scenarios. -
28
Codestral Mamba
Mistral AI
FreeIn honor of Cleopatra, whose magnificent fate concluded amidst the tragic incident involving a snake, we are excited to introduce Codestral Mamba, a Mamba2 language model specifically designed for code generation and released under an Apache 2.0 license. Codestral Mamba represents a significant advancement in our ongoing initiative to explore and develop innovative architectures. It is freely accessible for use, modification, and distribution, and we aspire for it to unlock new avenues in architectural research. The Mamba models are distinguished by their linear time inference capabilities and their theoretical potential to handle sequences of infinite length. This feature enables users to interact with the model effectively, providing rapid responses regardless of input size. Such efficiency is particularly advantageous for enhancing code productivity; therefore, we have equipped this model with sophisticated coding and reasoning skills, allowing it to perform competitively with state-of-the-art transformer-based models. As we continue to innovate, we believe Codestral Mamba will inspire further advancements in the coding community. -
29
Mistral NeMo
Mistral AI
FreeIntroducing Mistral NeMo, our latest and most advanced small model yet, featuring a cutting-edge 12 billion parameters and an expansive context length of 128,000 tokens, all released under the Apache 2.0 license. Developed in partnership with NVIDIA, Mistral NeMo excels in reasoning, world knowledge, and coding proficiency within its category. Its architecture adheres to industry standards, making it user-friendly and a seamless alternative for systems currently utilizing Mistral 7B. To facilitate widespread adoption among researchers and businesses, we have made available both pre-trained base and instruction-tuned checkpoints under the same Apache license. Notably, Mistral NeMo incorporates quantization awareness, allowing for FP8 inference without compromising performance. The model is also tailored for diverse global applications, adept in function calling and boasting a substantial context window. When compared to Mistral 7B, Mistral NeMo significantly outperforms in understanding and executing detailed instructions, showcasing enhanced reasoning skills and the ability to manage complex multi-turn conversations. Moreover, its design positions it as a strong contender for multi-lingual tasks, ensuring versatility across various use cases. -
30
Mixtral 8x22B
Mistral AI
FreeThe Mixtral 8x22B represents our newest open model, establishing a new benchmark for both performance and efficiency in the AI sector. This sparse Mixture-of-Experts (SMoE) model activates only 39B parameters from a total of 141B, ensuring exceptional cost efficiency relative to its scale. Additionally, it demonstrates fluency in multiple languages, including English, French, Italian, German, and Spanish, while also possessing robust skills in mathematics and coding. With its native function calling capability, combined with the constrained output mode utilized on la Plateforme, it facilitates the development of applications and the modernization of technology stacks on a large scale. The model's context window can handle up to 64K tokens, enabling accurate information retrieval from extensive documents. We prioritize creating models that maximize cost efficiency for their sizes, thereby offering superior performance-to-cost ratios compared to others in the community. The Mixtral 8x22B serves as a seamless extension of our open model lineage, and its sparse activation patterns contribute to its speed, making it quicker than any comparable dense 70B model on the market. Furthermore, its innovative design positions it as a leading choice for developers seeking high-performance solutions. -
31
Tülu 3
Ai2
FreeTülu 3 is a cutting-edge language model created by the Allen Institute for AI (Ai2) that aims to improve proficiency in fields like knowledge, reasoning, mathematics, coding, and safety. It is based on the Llama 3 Base and undergoes a detailed four-stage post-training regimen: careful prompt curation and synthesis, supervised fine-tuning on a wide array of prompts and completions, preference tuning utilizing both off- and on-policy data, and a unique reinforcement learning strategy that enhances targeted skills through measurable rewards. Notably, this open-source model sets itself apart by ensuring complete transparency, offering access to its training data, code, and evaluation tools, thus bridging the performance divide between open and proprietary fine-tuning techniques. Performance assessments reveal that Tülu 3 surpasses other models with comparable sizes, like Llama 3.1-Instruct and Qwen2.5-Instruct, across an array of benchmarks, highlighting its effectiveness. The continuous development of Tülu 3 signifies the commitment to advancing AI capabilities while promoting an open and accessible approach to technology. -
32
GPT-J
EleutherAI
FreeGPT-J represents an advanced language model developed by EleutherAI, known for its impressive capabilities. When it comes to performance, GPT-J showcases a proficiency that rivals OpenAI's well-known GPT-3 in various zero-shot tasks. Remarkably, it has even outperformed GPT-3 in specific areas, such as code generation. The most recent version of this model, called GPT-J-6B, is constructed using a comprehensive linguistic dataset known as The Pile, which is publicly accessible and consists of an extensive 825 gibibytes of language data divided into 22 unique subsets. Although GPT-J possesses similarities to ChatGPT, it's crucial to highlight that it is primarily intended for text prediction rather than functioning as a chatbot. In a notable advancement in March 2023, Databricks unveiled Dolly, a model that is capable of following instructions and operates under an Apache license, further enriching the landscape of language models. This evolution in AI technology continues to push the boundaries of what is possible in natural language processing. -
33
Stable LM
Stability AI
FreeStable LM represents a significant advancement in the field of language models by leveraging our previous experience with open-source initiatives, particularly in collaboration with EleutherAI, a nonprofit research organization. This journey includes the development of notable models such as GPT-J, GPT-NeoX, and the Pythia suite, all of which were trained on The Pile open-source dataset, while many contemporary open-source models like Cerebras-GPT and Dolly-2 have drawn inspiration from this foundational work. Unlike its predecessors, Stable LM is trained on an innovative dataset that is three times the size of The Pile, encompassing a staggering 1.5 trillion tokens. We plan to share more information about this dataset in the near future. The extensive nature of this dataset enables Stable LM to excel remarkably in both conversational and coding scenarios, despite its relatively modest size of 3 to 7 billion parameters when compared to larger models like GPT-3, which boasts 175 billion parameters. Designed for versatility, Stable LM 3B is a streamlined model that can efficiently function on portable devices such as laptops and handheld gadgets, making us enthusiastic about its practical applications and mobility. Overall, the development of Stable LM marks a pivotal step towards creating more efficient and accessible language models for a wider audience. -
34
MPT-7B
MosaicML
FreeWe are excited to present MPT-7B, the newest addition to the MosaicML Foundation Series. This transformer model has been meticulously trained from the ground up using 1 trillion tokens of diverse text and code. It is open-source and ready for commercial applications, delivering performance on par with LLaMA-7B. The training process took 9.5 days on the MosaicML platform, requiring no human input and incurring an approximate cost of $200,000. With MPT-7B, you can now train, fine-tune, and launch your own customized MPT models, whether you choose to begin with one of our provided checkpoints or start anew. To provide additional options, we are also introducing three fine-tuned variants alongside the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the latter boasting an impressive context length of 65,000 tokens, allowing for extensive content generation. These advancements open up new possibilities for developers and researchers looking to leverage the power of transformer models in their projects. -
35
LongLLaMA
LongLLaMA
FreeThis repository showcases the research preview of LongLLaMA, an advanced large language model that can manage extensive contexts of up to 256,000 tokens or potentially more. LongLLaMA is developed on the OpenLLaMA framework and has been fine-tuned utilizing the Focused Transformer (FoT) technique. The underlying code for LongLLaMA is derived from Code Llama. We are releasing a smaller 3B base variant of the LongLLaMA model, which is not instruction-tuned, under an open license (Apache 2.0), along with inference code that accommodates longer contexts available on Hugging Face. This model's weights can seamlessly replace LLaMA in existing systems designed for shorter contexts, specifically those handling up to 2048 tokens. Furthermore, we include evaluation results along with comparisons to the original OpenLLaMA models, thereby providing a comprehensive overview of LongLLaMA's capabilities in the realm of long-context processing. -
36
Grok
xAI
FreeGrok is an artificial intelligence inspired by the Hitchhiker’s Guide to the Galaxy, aiming to respond to a wide array of inquiries while also prompting users with thought-provoking questions. With a knack for delivering responses infused with humor and a bit of irreverence, Grok is not the right choice for those who dislike a lighthearted approach. A distinctive feature of Grok is its ability to access real-time information through the 𝕏 platform, allowing it to tackle bold and unconventional questions that many other AI systems might shy away from. This capability not only enhances its versatility but also ensures that users receive answers that are both timely and engaging. -
37
Llama 3
Meta
FreeWe have incorporated Llama 3 into Meta AI, our intelligent assistant that enhances how individuals accomplish tasks, innovate, and engage with Meta AI. By utilizing Meta AI for coding and problem-solving, you can experience Llama 3's capabilities first-hand. Whether you are creating agents or other AI-driven applications, Llama 3, available in both 8B and 70B versions, will provide the necessary capabilities and flexibility to bring your ideas to fruition. With the launch of Llama 3, we have also revised our Responsible Use Guide (RUG) to offer extensive guidance on the ethical development of LLMs. Our system-focused strategy encompasses enhancements to our trust and safety mechanisms, including Llama Guard 2, which is designed to align with the newly introduced taxonomy from MLCommons, broadening its scope to cover a wider array of safety categories, alongside code shield and Cybersec Eval 2. Additionally, these advancements aim to ensure a safer and more responsible use of AI technologies in various applications. -
38
Codestral
Mistral AI
FreeWe are excited to unveil Codestral, our inaugural code generation model. This open-weight generative AI system is specifically crafted for tasks related to code generation, enabling developers to seamlessly write and engage with code via a unified instruction and completion API endpoint. As it becomes proficient in both programming languages and English, Codestral is poised to facilitate the creation of sophisticated AI applications tailored for software developers. With a training foundation that encompasses a wide array of over 80 programming languages—ranging from widely-used options like Python, Java, C, C++, JavaScript, and Bash to more niche languages such as Swift and Fortran—Codestral ensures a versatile support system for developers tackling various coding challenges and projects. Its extensive language capabilities empower developers to confidently navigate different coding environments, making Codestral an invaluable asset in the programming landscape. -
39
CodeQwen
Alibaba
FreeCodeQwen serves as the coding counterpart to Qwen, which is a series of large language models created by the Qwen team at Alibaba Cloud. Built on a transformer architecture that functions solely as a decoder, this model has undergone extensive pre-training using a vast dataset of code. It showcases robust code generation abilities and demonstrates impressive results across various benchmarking tests. With the capacity to comprehend and generate long contexts of up to 64,000 tokens, CodeQwen accommodates 92 programming languages and excels in tasks such as text-to-SQL queries and debugging. Engaging with CodeQwen is straightforward—you can initiate a conversation with just a few lines of code utilizing transformers. The foundation of this interaction relies on constructing the tokenizer and model using pre-existing methods, employing the generate function to facilitate dialogue guided by the chat template provided by the tokenizer. In alignment with our established practices, we implement the ChatML template tailored for chat models. This model adeptly completes code snippets based on the prompts it receives, delivering responses without the need for any further formatting adjustments, thereby enhancing the user experience. The seamless integration of these elements underscores the efficiency and versatility of CodeQwen in handling diverse coding tasks. -
40
Mistral Large
Mistral AI
FreeMistral Large stands as the premier language model from Mistral AI, engineered for sophisticated text generation and intricate multilingual reasoning tasks such as text comprehension, transformation, and programming code development. This model encompasses support for languages like English, French, Spanish, German, and Italian, which allows it to grasp grammar intricacies and cultural nuances effectively. With an impressive context window of 32,000 tokens, Mistral Large can retain and reference information from lengthy documents with accuracy. Its abilities in precise instruction adherence and native function-calling enhance the development of applications and the modernization of tech stacks. Available on Mistral's platform, Azure AI Studio, and Azure Machine Learning, it also offers the option for self-deployment, catering to sensitive use cases. Benchmarks reveal that Mistral Large performs exceptionally well, securing its position as the second-best model globally that is accessible via an API, just behind GPT-4, illustrating its competitive edge in the AI landscape. Such capabilities make it an invaluable tool for developers seeking to leverage advanced AI technology. -
41
IBM Granite
IBM
FreeIBM® Granite™ comprises a suite of AI models specifically designed for business applications, built from the ground up to prioritize trust and scalability in AI implementations. Currently, the open-source Granite models can be accessed. Our goal is to make AI widely available to as many developers as possible, which is why we have released the essential Granite Code, as well as Time Series, Language, and GeoSpatial models as open-source on Hugging Face, under the permissive Apache 2.0 license, allowing extensive commercial use without restrictions. Every Granite model is developed using meticulously selected data, ensuring exceptional transparency regarding the sources of the training data. Additionally, we have made the tools that validate and maintain the quality of this data accessible to the public, meeting the rigorous standards required for enterprise-level applications. This commitment to openness and quality reflects our dedication to fostering innovation in the AI landscape. -
42
Granite Code
IBM
FreeWe present the Granite series of decoder-only code models specifically designed for tasks involving code generation, such as debugging, code explanation, and documentation, utilizing programming languages across a spectrum of 116 different types. An extensive assessment of the Granite Code model family across various tasks reveals that these models consistently achieve leading performance compared to other open-source code language models available today. Among the notable strengths of Granite Code models are: Versatile Code LLM: The Granite Code models deliver competitive or top-tier results across a wide array of code-related tasks, which include code generation, explanation, debugging, editing, translation, and beyond, showcasing their capacity to handle various coding challenges effectively. Additionally, their adaptability makes them suitable for both simple and complex coding scenarios. Reliable Enterprise-Grade LLM: All models in this series are developed using data that complies with licensing requirements and is gathered in alignment with IBM's AI Ethics guidelines, ensuring trustworthy usage for enterprise applications. -
43
Qwen2
Alibaba
FreeQwen2 represents a collection of extensive language models crafted by the Qwen team at Alibaba Cloud. This series encompasses a variety of models, including base and instruction-tuned versions, with parameters varying from 0.5 billion to an impressive 72 billion, showcasing both dense configurations and a Mixture-of-Experts approach. The Qwen2 series aims to outperform many earlier open-weight models, including its predecessor Qwen1.5, while also striving to hold its own against proprietary models across numerous benchmarks in areas such as language comprehension, generation, multilingual functionality, programming, mathematics, and logical reasoning. Furthermore, this innovative series is poised to make a significant impact in the field of artificial intelligence, offering enhanced capabilities for a diverse range of applications. -
44
Grok 2
xAI
FreeGrok-2 represents the cutting edge of artificial intelligence, showcasing remarkable engineering that challenges the limits of AI's potential. Drawing inspiration from the humor and intelligence found in the Hitchhiker's Guide to the Galaxy and the practicality of JARVIS from Iron Man, Grok-2 transcends typical AI models by serving as a true companion. With its comprehensive knowledge base extending to recent events, Grok-2 provides insights that are not only informative but also infused with humor, offering a refreshing perspective on human nature. Its features allow it to tackle a wide range of inquiries with exceptional helpfulness, frequently presenting solutions that are both creative and unconventional. Grok-2's development prioritizes honesty, intentionally steering clear of the biases of contemporary culture, and aims to remain a trustworthy source of both information and amusement in a world that grows more intricate by the day. This unique blend of attributes positions Grok-2 as an indispensable tool for those seeking clarity and connection in a rapidly evolving landscape. -
45
Sky-T1
NovaSky
FreeSky-T1-32B-Preview is an innovative open-source reasoning model crafted by the NovaSky team at UC Berkeley's Sky Computing Lab. It delivers performance comparable to proprietary models such as o1-preview on various reasoning and coding assessments, while being developed at a cost of less than $450, highlighting the potential for budget-friendly, advanced reasoning abilities. Fine-tuned from Qwen2.5-32B-Instruct, the model utilized a meticulously curated dataset comprising 17,000 examples spanning multiple fields, such as mathematics and programming. The entire training process was completed in just 19 hours using eight H100 GPUs with DeepSpeed Zero-3 offloading technology. Every component of this initiative—including the data, code, and model weights—is entirely open-source, allowing both academic and open-source communities to not only replicate but also improve upon the model's capabilities. This accessibility fosters collaboration and innovation in the realm of artificial intelligence research and development. -
46
DeepSeek-V2
DeepSeek
FreeDeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence. -
47
Falcon 3
Technology Innovation Institute (TII)
FreeFalcon 3 is a large language model that has been made open-source by the Technology Innovation Institute (TII), aiming to broaden access to advanced AI capabilities. Its design prioritizes efficiency, enabling it to function effectively on lightweight devices like laptops while maintaining high performance levels. The Falcon 3 suite includes four scalable models, each specifically designed for various applications and capable of supporting multiple languages while minimizing resource consumption. This new release in TII's LLM lineup sets a benchmark in reasoning, language comprehension, instruction adherence, coding, and mathematical problem-solving. By offering a blend of robust performance and resource efficiency, Falcon 3 seeks to democratize AI access, allowing users in numerous fields to harness sophisticated technology without the necessity for heavy computational power. Furthermore, this initiative not only enhances individual capabilities but also fosters innovation across different sectors by making advanced AI tools readily available. -
48
Qwen2.5-Max
Alibaba
FreeQwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology. -
49
SmolLM2
Hugging Face
FreeSmolLM2 comprises an advanced suite of compact language models specifically created for on-device functionalities. This collection features models with varying sizes, including those with 1.7 billion parameters, as well as more streamlined versions at 360 million and 135 million parameters, ensuring efficient performance on even the most limited hardware. They excel in generating text and are fine-tuned for applications requiring real-time responsiveness and minimal latency, delivering high-quality outcomes across a multitude of scenarios such as content generation, coding support, and natural language understanding. The versatility of SmolLM2 positions it as an ideal option for developers aiming to incorporate robust AI capabilities into mobile devices, edge computing solutions, and other settings where resources are constrained. Its design reflects a commitment to balancing performance and accessibility, making cutting-edge AI technology more widely available. -
50
QwQ-Max-Preview
Alibaba
FreeQwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community. -
51
Mistral Large 2
Mistral AI
FreeMistral AI has introduced the Mistral Large 2, a sophisticated AI model crafted to excel in various domains such as code generation, multilingual understanding, and intricate reasoning tasks. With an impressive 128k context window, this model accommodates a wide array of languages, including English, French, Spanish, and Arabic, while also supporting an extensive list of over 80 programming languages. Designed for high-throughput single-node inference, Mistral Large 2 is perfectly suited for applications requiring large context handling. Its superior performance on benchmarks like MMLU, coupled with improved capabilities in code generation and reasoning, guarantees both accuracy and efficiency in results. Additionally, the model features enhanced function calling and retrieval mechanisms, which are particularly beneficial for complex business applications. This makes Mistral Large 2 not only versatile but also a powerful tool for developers and businesses looking to leverage advanced AI capabilities. -
52
EXAONE Deep
LG
FreeEXAONE Deep represents a collection of advanced language models that are enhanced for reasoning, created by LG AI Research, and come in sizes of 2.4 billion, 7.8 billion, and 32 billion parameters. These models excel in a variety of reasoning challenges, particularly in areas such as mathematics and coding assessments. Significantly, the EXAONE Deep 2.4B model outshines other models of its size, while the 7.8B variant outperforms both open-weight models of similar dimensions and the proprietary reasoning model known as OpenAI o1-mini. Furthermore, the EXAONE Deep 32B model competes effectively with top-tier open-weight models in the field. The accompanying repository offers extensive documentation that includes performance assessments, quick-start guides for leveraging EXAONE Deep models with the Transformers library, detailed explanations of quantized EXAONE Deep weights formatted in AWQ and GGUF, as well as guidance on how to run these models locally through platforms like llama.cpp and Ollama. Additionally, this resource serves to enhance user understanding and accessibility to the capabilities of EXAONE Deep models. -
53
Llama 4 Maverick
Meta
FreeLlama 4 Maverick is a cutting-edge multimodal AI model with 17 billion active parameters and 128 experts, setting a new standard for efficiency and performance. It excels in diverse domains, outperforming other models such as GPT-4o and Gemini 2.0 Flash in coding, reasoning, and image-related tasks. Llama 4 Maverick integrates both text and image processing seamlessly, offering enhanced capabilities for complex tasks such as visual question answering, content generation, and problem-solving. The model’s performance-to-cost ratio makes it an ideal choice for businesses looking to integrate powerful AI into their operations without the hefty resource demands. -
54
GPT-4.1
OpenAI
$2 per 1M tokens (input)GPT-4.1 represents a significant upgrade in generative AI, with notable advancements in coding, instruction adherence, and handling long contexts. This model supports up to 1 million tokens of context, allowing it to tackle complex, multi-step tasks across various domains. GPT-4.1 outperforms earlier models in key benchmarks, particularly in coding accuracy, and is designed to streamline workflows for developers and businesses by improving task completion speed and reliability. -
55
GPT-4.1 mini
OpenAI
$0.40 per 1M tokens (input)GPT-4.1 mini is a streamlined version of GPT-4.1, offering the same core capabilities in coding, instruction adherence, and long-context comprehension, but with faster performance and lower costs. Ideal for developers seeking to integrate AI into real-time applications, GPT-4.1 mini maintains a 1 million token context window and is well-suited for tasks that demand low-latency responses. It is a cost-effective option for businesses that need powerful AI capabilities without the high overhead associated with larger models. -
56
GPT-4.1 nano
OpenAI
$0.10 per 1M tokens (input)GPT-4.1 nano is a lightweight and fast version of GPT-4.1, designed for applications that prioritize speed and affordability. This model can handle up to 1 million tokens of context, making it suitable for tasks such as text classification, autocompletion, and real-time decision-making. With reduced latency and operational costs, GPT-4.1 nano is the ideal choice for businesses seeking powerful AI capabilities on a budget, without sacrificing essential performance features. -
57
Qwen3
Alibaba
FreeQwen3 is a state-of-the-art large language model designed to revolutionize the way we interact with AI. Featuring both thinking and non-thinking modes, Qwen3 allows users to customize its response style, ensuring optimal performance for both complex reasoning tasks and quick inquiries. With the ability to support 119 languages, the model is suitable for international projects. The model's hybrid training approach, which involves over 36 trillion tokens, ensures accuracy across a variety of disciplines, from coding to STEM problems. Its integration with platforms such as Hugging Face, ModelScope, and Kaggle allows for easy adoption in both research and production environments. By enhancing multilingual support and incorporating advanced AI techniques, Qwen3 is designed to push the boundaries of AI-driven applications. -
58
Mistral Medium 3
Mistral AI
FreeMistral Medium 3 is an innovative AI model designed to offer high performance at a significantly lower cost, making it an attractive solution for enterprises. It integrates seamlessly with both on-premises and cloud environments, supporting hybrid deployments for more flexibility. This model stands out in professional use cases such as coding, STEM tasks, and multimodal understanding, where it achieves near-competitive results against larger, more expensive models. Additionally, Mistral Medium 3 allows businesses to deploy custom post-training and integrate it into existing systems, making it adaptable to various industry needs. With its impressive performance in coding tasks and real-world human evaluations, Mistral Medium 3 is a cost-effective solution that enables companies to implement AI into their workflows. Its enterprise-focused features, including continuous pretraining and domain-specific fine-tuning, make it a reliable tool for sectors like healthcare, financial services, and energy. -
59
Devstral
Mistral AI
$0.1 per million input tokensDevstral is a collaborative effort between Mistral AI and All Hands AI, resulting in an open-source large language model specifically tailored for software engineering. This model demonstrates remarkable proficiency in navigating intricate codebases, managing edits across numerous files, and addressing practical problems, achieving a notable score of 46.8% on the SWE-Bench Verified benchmark, which is superior to all other open-source models. Based on Mistral-Small-3.1, Devstral boasts an extensive context window supporting up to 128,000 tokens. It is designed for optimal performance on high-performance hardware setups, such as Macs equipped with 32GB of RAM or Nvidia RTX 4090 GPUs, and supports various inference frameworks including vLLM, Transformers, and Ollama. Released under the Apache 2.0 license, Devstral is freely accessible on platforms like Hugging Face, Ollama, Kaggle, Unsloth, and LM Studio, allowing developers to integrate its capabilities into their projects seamlessly. This model not only enhances productivity for software engineers but also serves as a valuable resource for anyone working with code. -
60
CodeGen
Salesforce
FreeCodeGen is an open-source framework designed for generating code through program synthesis, utilizing TPU-v4 for its training. It stands out as a strong contender against OpenAI Codex in the realm of code generation solutions. -
61
StarCoder
BigCode
FreeStarCoder and StarCoderBase represent advanced Large Language Models specifically designed for code, developed using openly licensed data from GitHub, which encompasses over 80 programming languages, Git commits, GitHub issues, and Jupyter notebooks. In a manner akin to LLaMA, we constructed a model with approximately 15 billion parameters trained on a staggering 1 trillion tokens. Furthermore, we tailored the StarCoderBase model with 35 billion Python tokens, leading to the creation of what we now refer to as StarCoder. Our evaluations indicated that StarCoderBase surpasses other existing open Code LLMs when tested against popular programming benchmarks and performs on par with or even exceeds proprietary models like code-cushman-001 from OpenAI, the original Codex model that fueled early iterations of GitHub Copilot. With an impressive context length exceeding 8,000 tokens, the StarCoder models possess the capability to handle more information than any other open LLM, thus paving the way for a variety of innovative applications. This versatility is highlighted by our ability to prompt the StarCoder models through a sequence of dialogues, effectively transforming them into dynamic technical assistants that can provide support in diverse programming tasks. -
62
Llama 2
Meta
FreeIntroducing the next iteration of our open-source large language model, this version features model weights along with initial code for the pretrained and fine-tuned Llama language models, which span from 7 billion to 70 billion parameters. The Llama 2 pretrained models have been developed using an impressive 2 trillion tokens and offer double the context length compared to their predecessor, Llama 1. Furthermore, the fine-tuned models have been enhanced through the analysis of over 1 million human annotations. Llama 2 demonstrates superior performance against various other open-source language models across multiple external benchmarks, excelling in areas such as reasoning, coding capabilities, proficiency, and knowledge assessments. For its training, Llama 2 utilized publicly accessible online data sources, while the fine-tuned variant, Llama-2-chat, incorporates publicly available instruction datasets along with the aforementioned extensive human annotations. Our initiative enjoys strong support from a diverse array of global stakeholders who are enthusiastic about our open approach to AI, including companies that have provided valuable early feedback and are eager to collaborate using Llama 2. The excitement surrounding Llama 2 signifies a pivotal shift in how AI can be developed and utilized collectively. -
63
Code Llama
Meta
FreeCode Llama is an advanced language model designed to generate code through text prompts, distinguishing itself as a leading tool among publicly accessible models for coding tasks. This innovative model not only streamlines workflows for existing developers but also aids beginners in overcoming challenges associated with learning to code. Its versatility positions Code Llama as both a valuable productivity enhancer and an educational resource, assisting programmers in creating more robust and well-documented software solutions. Additionally, users can generate both code and natural language explanations by providing either type of prompt, making it an adaptable tool for various programming needs. Available for free for both research and commercial applications, Code Llama is built upon Llama 2 architecture and comes in three distinct versions: the foundational Code Llama model, Code Llama - Python which is tailored specifically for Python programming, and Code Llama - Instruct, optimized for comprehending and executing natural language directives effectively. -
64
ChatGPT Enterprise
OpenAI
$60/user/ month Experience unparalleled security and privacy along with the most advanced iteration of ChatGPT to date. 1. Customer data and prompts are excluded from model training processes. 2. Data is securely encrypted both at rest using AES-256 and during transit with TLS 1.2 or higher. 3. Compliance with SOC 2 standards is ensured. 4. A dedicated admin console simplifies bulk management of members. 5. Features like SSO and Domain Verification enhance security. 6. An analytics dashboard provides insights into usage patterns. 7. Users enjoy unlimited, high-speed access to GPT-4 alongside Advanced Data Analysis capabilities*. 8. With 32k token context windows, you can input four times longer texts and retain memory. 9. Easily shareable chat templates facilitate collaboration within your organization. 10. This comprehensive suite of features ensures that your team operates seamlessly and securely. -
65
OpenAI o3
OpenAI
$2 per 1 million tokensOpenAI o3 is a cutting-edge AI model that aims to improve reasoning abilities by simplifying complex tasks into smaller, more digestible components. It shows remarkable advancements compared to earlier AI versions, particularly in areas such as coding, competitive programming, and achieving top results in math and science assessments. Accessible for general use, OpenAI o3 facilitates advanced AI-enhanced problem-solving and decision-making processes. The model employs deliberative alignment strategies to guarantee that its outputs adhere to recognized safety and ethical standards, positioning it as an invaluable resource for developers, researchers, and businesses in pursuit of innovative AI solutions. With its robust capabilities, OpenAI o3 is set to redefine the boundaries of artificial intelligence applications across various fields. -
66
Yi-Large
01.AI
$0.19 per 1M input tokenYi-Large is an innovative proprietary large language model created by 01.AI, featuring an impressive context length of 32k and a cost structure of $2 for each million tokens for both inputs and outputs. Renowned for its superior natural language processing abilities, common-sense reasoning, and support for multiple languages, it competes effectively with top models such as GPT-4 and Claude3 across various evaluations. This model is particularly adept at handling tasks that involve intricate inference, accurate prediction, and comprehensive language comprehension, making it ideal for applications such as knowledge retrieval, data categorization, and the development of conversational chatbots that mimic human interaction. Built on a decoder-only transformer architecture, Yi-Large incorporates advanced features like pre-normalization and Group Query Attention, and it has been trained on an extensive, high-quality multilingual dataset to enhance its performance. The model's flexibility and economical pricing position it as a formidable player in the artificial intelligence landscape, especially for businesses looking to implement AI technologies on a global scale. Additionally, its ability to adapt to a wide range of use cases underscores its potential to revolutionize how organizations leverage language models for various needs. -
67
Grok 3 mini
xAI
FreeThe Grok-3 Mini, developed by xAI, serves as a nimble and perceptive AI assistant specifically designed for individuals seeking prompt yet comprehensive responses to their inquiries. Retaining the core attributes of the Grok series, this compact variant offers a lighthearted yet insightful viewpoint on various human experiences while prioritizing efficiency. It caters to those who are constantly on the go or have limited access to resources, ensuring that the same level of inquisitiveness and support is delivered in a smaller package. Additionally, Grok-3 Mini excels at addressing a wide array of questions, offering concise insights without sacrificing depth or accuracy, which makes it an excellent resource for navigating the demands of contemporary life. Ultimately, it embodies a blend of practicality and intelligence that meets the needs of modern users. -
68
Mercury Coder
Inception Labs
FreeMercury, the groundbreaking creation from Inception Labs, represents the first large language model at a commercial scale that utilizes diffusion technology, achieving a remarkable tenfold increase in processing speed while also lowering costs in comparison to standard autoregressive models. Designed for exceptional performance in reasoning, coding, and the generation of structured text, Mercury can handle over 1000 tokens per second when operating on NVIDIA H100 GPUs, positioning it as one of the most rapid LLMs on the market. In contrast to traditional models that produce text sequentially, Mercury enhances its responses through a coarse-to-fine diffusion strategy, which boosts precision and minimizes instances of hallucination. Additionally, with the inclusion of Mercury Coder, a tailored coding module, developers are empowered to take advantage of advanced AI-assisted code generation that boasts remarkable speed and effectiveness. This innovative approach not only transforms coding practices but also sets a new benchmark for the capabilities of AI in various applications. -
69
ERNIE X1 Turbo
Baidu
$0.14 per 1M tokensBaidu’s ERNIE X1 Turbo is designed for industries that require advanced cognitive and creative AI abilities. Its multimodal processing capabilities allow it to understand and generate responses based on a range of data inputs, including text, images, and potentially audio. This AI model’s advanced reasoning mechanisms and competitive performance make it a strong alternative to high-cost models like DeepSeek R1. Additionally, ERNIE X1 Turbo integrates seamlessly into various applications, empowering developers and businesses to use AI more effectively while lowering the costs typically associated with these technologies. -
70
Gemini 2.5 Pro Preview (I/O Edition)
Google
$19.99/month Gemini 2.5 Pro Preview (I/O Edition) offers cutting-edge AI tools for developers, designed to simplify coding and improve web app creation. This version of the Gemini AI model excels in code editing, transformation, and error reduction, making it an invaluable asset for developers. Its advanced performance in video understanding and web development tasks ensures that you can create both beautiful and functional web apps. Available via Google’s AI platforms, Gemini 2.5 Pro Preview helps you streamline your workflow with smarter, faster coding and reduced errors for a more efficient development process. -
71
OpenAI o3-pro
OpenAI
$20 per 1 million tokensOpenAI’s o3-pro is a specialized, high-performance reasoning model designed to tackle complex analytical tasks with high precision. Available to ChatGPT Pro and Team subscribers, it replaces the older o1-pro model and brings enhanced capabilities for domains such as mathematics, scientific problem-solving, and coding. The model supports advanced features including real-time web search, file analysis, Python code execution, and visual input processing, enabling it to handle multifaceted professional and enterprise use cases. While o3-pro’s performance is exceptional in accuracy and instruction-following, it generally responds slower and does not support features like image generation or temporary chat sessions. Access to the model is priced at a premium rate, reflecting its advanced capabilities. Early evaluations show that o3-pro outperforms its predecessor in delivering clearer, more reliable results. OpenAI markets o3-pro as a dependable engine prioritizing depth of analysis over speed. This makes it an ideal tool for users requiring detailed reasoning and thorough problem-solving. -
72
PaLM 2
Google
PaLM 2 represents the latest evolution in large language models, continuing Google's tradition of pioneering advancements in machine learning and ethical AI practices. It demonstrates exceptional capabilities in complex reasoning activities such as coding, mathematics, classification, answering questions, translation across languages, and generating natural language, surpassing the performance of previous models, including its predecessor PaLM. This enhanced performance is attributed to its innovative construction, which combines optimal computing scalability, a refined mixture of datasets, and enhancements in model architecture. Furthermore, PaLM 2 aligns with Google's commitment to responsible AI development and deployment, having undergone extensive assessments to identify potential harms, biases, and practical applications in both research and commercial products. This model serves as a foundation for other cutting-edge applications, including Med-PaLM 2 and Sec-PaLM, while also powering advanced AI features and tools at Google, such as Bard and the PaLM API. Additionally, its versatility makes it a significant asset in various fields, showcasing the potential of AI to enhance productivity and innovation. -
73
DBRX
Databricks
We are thrilled to present DBRX, a versatile open LLM developed by Databricks. This innovative model achieves unprecedented performance on a variety of standard benchmarks, setting a new benchmark for existing open LLMs. Additionally, it equips both the open-source community and enterprises crafting their own LLMs with features that were once exclusive to proprietary model APIs; our evaluations indicate that it outperforms GPT-3.5 and competes effectively with Gemini 1.0 Pro. Notably, it excels as a code model, outperforming specialized counterparts like CodeLLaMA-70B in programming tasks, while also demonstrating its prowess as a general-purpose LLM. The remarkable quality of DBRX is complemented by significant enhancements in both training and inference efficiency. Thanks to its advanced fine-grained mixture-of-experts (MoE) architecture, DBRX elevates the efficiency of open models to new heights. In terms of inference speed, it can be twice as fast as LLaMA2-70B, and its total and active parameter counts are approximately 40% of those in Grok-1, showcasing its compact design without compromising capability. This combination of speed and size makes DBRX a game-changer in the landscape of open AI models. -
74
OLMo 2
Ai2
OLMo 2 represents a collection of completely open language models created by the Allen Institute for AI (AI2), aimed at giving researchers and developers clear access to training datasets, open-source code, reproducible training methodologies, and thorough assessments. These models are trained on an impressive volume of up to 5 trillion tokens and compete effectively with top open-weight models like Llama 3.1, particularly in English academic evaluations. A key focus of OLMo 2 is on ensuring training stability, employing strategies to mitigate loss spikes during extended training periods, and applying staged training interventions in the later stages of pretraining to mitigate weaknesses in capabilities. Additionally, the models leverage cutting-edge post-training techniques derived from AI2's Tülu 3, leading to the development of OLMo 2-Instruct models. To facilitate ongoing enhancements throughout the development process, an actionable evaluation framework known as the Open Language Modeling Evaluation System (OLMES) was created, which includes 20 benchmarks that evaluate essential capabilities. This comprehensive approach not only fosters transparency but also encourages continuous improvement in language model performance. -
75
Amazon Nova
Amazon
Amazon Nova represents an advanced generation of foundation models (FMs) that offer cutting-edge intelligence and exceptional price-performance ratios, and it is exclusively accessible through Amazon Bedrock. The lineup includes three distinct models: Amazon Nova Micro, Amazon Nova Lite, and Amazon Nova Pro, each designed to process inputs in text, image, or video form and produce text-based outputs. These models cater to various operational needs, providing diverse options in terms of capability, accuracy, speed, and cost efficiency. Specifically, Amazon Nova Micro is tailored for text-only applications, ensuring the quickest response times at minimal expense. In contrast, Amazon Nova Lite serves as a budget-friendly multimodal solution that excels at swiftly handling image, video, and text inputs. On the other hand, Amazon Nova Pro boasts superior capabilities, offering an optimal blend of accuracy, speed, and cost-effectiveness suitable for an array of tasks, including video summarization, Q&A, and mathematical computations. With its exceptional performance and affordability, Amazon Nova Pro stands out as an attractive choice for nearly any application. -
76
Yi-Lightning
Yi-Lightning
Yi-Lightning, a product of 01.AI and spearheaded by Kai-Fu Lee, marks a significant leap forward in the realm of large language models, emphasizing both performance excellence and cost-effectiveness. With the ability to process a context length of up to 16K tokens, it offers an attractive pricing model of $0.14 per million tokens for both inputs and outputs, making it highly competitive in the market. The model employs an improved Mixture-of-Experts (MoE) framework, featuring detailed expert segmentation and sophisticated routing techniques that enhance its training and inference efficiency. Yi-Lightning has distinguished itself across multiple fields, achieving top distinctions in areas such as Chinese language processing, mathematics, coding tasks, and challenging prompts on chatbot platforms, where it ranked 6th overall and 9th in style control. Its creation involved an extensive combination of pre-training, targeted fine-tuning, and reinforcement learning derived from human feedback, which not only enhances its performance but also prioritizes user safety. Furthermore, the model's design includes significant advancements in optimizing both memory consumption and inference speed, positioning it as a formidable contender in its field. -
77
Gemini 2.0 Pro
Google
Gemini 2.0 Pro stands as the pinnacle of Google DeepMind's AI advancements, engineered to master intricate tasks like programming and complex problem resolution. As it undergoes experimental testing, this model boasts an impressive context window of two million tokens, allowing for the efficient processing and analysis of extensive data sets. One of its most remarkable attributes is its ability to integrate effortlessly with external tools such as Google Search and code execution platforms, which significantly boosts its capacity to deliver precise and thorough answers. This innovative model signifies a major leap forward in artificial intelligence, equipping both developers and users with a formidable tool for addressing demanding challenges. Furthermore, its potential applications span various industries, making it a versatile asset in the evolving landscape of AI technology. -
78
Reka Flash 3
Reka
Reka Flash 3 is a cutting-edge multimodal AI model with 21 billion parameters, crafted by Reka AI to perform exceptionally well in tasks such as general conversation, coding, following instructions, and executing functions. This model adeptly handles and analyzes a myriad of inputs, including text, images, video, and audio, providing a versatile and compact solution for a wide range of applications. Built from the ground up, Reka Flash 3 was trained on a rich array of datasets, encompassing both publicly available and synthetic information, and it underwent a meticulous instruction tuning process with high-quality selected data to fine-tune its capabilities. The final phase of its training involved employing reinforcement learning techniques, specifically using the REINFORCE Leave One-Out (RLOO) method, which combined both model-based and rule-based rewards to significantly improve its reasoning skills. With an impressive context length of 32,000 tokens, Reka Flash 3 competes effectively with proprietary models like OpenAI's o1-mini, making it an excellent choice for applications requiring low latency or on-device processing. The model operates at full precision with a memory requirement of 39GB (fp16), although it can be efficiently reduced to just 11GB through the use of 4-bit quantization, demonstrating its adaptability for various deployment scenarios. Overall, Reka Flash 3 represents a significant advancement in multimodal AI technology, capable of meeting diverse user needs across multiple platforms. -
79
NVIDIA Llama Nemotron
NVIDIA
The NVIDIA Llama Nemotron family comprises a series of sophisticated language models that are fine-tuned for complex reasoning and a wide array of agentic AI applications. These models shine in areas such as advanced scientific reasoning, complex mathematics, coding, following instructions, and executing tool calls. They are designed for versatility, making them suitable for deployment on various platforms, including data centers and personal computers, and feature the ability to switch reasoning capabilities on or off, which helps to lower inference costs during less demanding tasks. The Llama Nemotron series consists of models specifically designed to meet different deployment requirements. Leveraging the foundation of Llama models and enhanced through NVIDIA's post-training techniques, these models boast a notable accuracy improvement of up to 20% compared to their base counterparts while also achieving inference speeds that can be up to five times faster than other leading open reasoning models. This remarkable efficiency allows for the management of more intricate reasoning challenges, boosts decision-making processes, and significantly lowers operational expenses for businesses. Consequently, the Llama Nemotron models represent a significant advancement in the field of AI, particularly for organizations seeking to integrate cutting-edge reasoning capabilities into their systems. -
80
AlphaCodium
Qodo
AlphaCodium is an innovative AI tool created by Qodo that focuses on enhancing coding through iterative and test-driven methodologies. By facilitating logical reasoning, testing, and code refinement, it aids large language models in boosting their accuracy. Unlike traditional prompt-based methods, AlphaCodium steers AI through a more structured flow, which enhances its ability to tackle intricate coding challenges, especially those that involve edge cases. This tool not only refines outputs through specific tests but also ensures that results are more dependable, thereby improving overall performance in coding tasks. Studies show that AlphaCodium significantly raises the success rates of models such as GPT-4o, OpenAI o1, and Sonnet-3.5. Additionally, it empowers developers by offering sophisticated solutions for challenging programming assignments, ultimately leading to greater efficiency in the software development process. By harnessing the power of structured guidance, AlphaCodium enables developers to tackle complex coding tasks with newfound confidence and competence. -
81
Amazon Nova Micro
Amazon
Amazon Nova Micro is an advanced text-only AI model optimized for rapid language processing at a very low cost. With capabilities in reasoning, translation, and code completion, it offers over 200 tokens per second in response generation, making it suitable for fast-paced, real-time applications. Nova Micro supports fine-tuning with text inputs, and its efficiency in understanding and generating text makes it a cost-effective solution for AI-driven applications requiring high performance and quick outputs. -
82
Amazon Nova Lite
Amazon
Amazon Nova Lite is a versatile AI model that supports multimodal inputs, including text, image, and video, and provides lightning-fast processing. It offers a great balance of speed, accuracy, and affordability, making it ideal for applications that need high throughput, such as customer engagement and content creation. With support for fine-tuning and real-time responsiveness, Nova Lite delivers high-quality outputs with minimal latency, empowering businesses to innovate at scale. -
83
Amazon Nova Pro
Amazon
Amazon Nova Pro is a high-performance multimodal AI model that combines top-tier accuracy with fast processing and cost efficiency. It is perfect for use cases like video summarization, complex Q&A, code development, and executing multi-step AI workflows. Nova Pro supports text, image, and video inputs, allowing businesses to enhance customer interactions, content creation, and data analysis with AI. Its ability to perform well on industry benchmarks makes it suitable for enterprises aiming to streamline operations and drive automation. -
84
Amazon Nova Premier
Amazon
Amazon Nova Premier is a cutting-edge model released as part of the Amazon Bedrock family, designed for tackling sophisticated tasks with unmatched efficiency. With the ability to process text, images, and video, it is ideal for complex workflows that require deep contextual understanding and multi-step execution. This model boasts a significant advantage with its one-million token context, making it suitable for analyzing massive documents or expansive code bases. Moreover, Nova Premier's distillation feature allows the creation of more efficient models, such as Nova Pro and Nova Micro, that deliver high accuracy with reduced latency and operational costs. Its advanced capabilities have already proven effective in various scenarios, such as investment research, where it can coordinate multiple agents to gather and synthesize relevant financial data. This process not only saves time but also enhances the overall efficiency of the AI models used. -
85
DeepSeek-Coder-V2
DeepSeek
DeepSeek-Coder-V2 is an open-source model tailored for excellence in programming and mathematical reasoning tasks. Utilizing a Mixture-of-Experts (MoE) architecture, it boasts a staggering 236 billion total parameters, with 21 billion of those being activated per token, which allows for efficient processing and outstanding performance. Trained on a massive dataset comprising 6 trillion tokens, this model enhances its prowess in generating code and tackling mathematical challenges. With the ability to support over 300 programming languages, DeepSeek-Coder-V2 has consistently outperformed its competitors on various benchmarks. It is offered in several variants, including DeepSeek-Coder-V2-Instruct, which is optimized for instruction-based tasks, and DeepSeek-Coder-V2-Base, which is effective for general text generation. Additionally, the lightweight options, such as DeepSeek-Coder-V2-Lite-Base and DeepSeek-Coder-V2-Lite-Instruct, cater to environments that require less computational power. These variations ensure that developers can select the most suitable model for their specific needs, making DeepSeek-Coder-V2 a versatile tool in the programming landscape. -
86
SWE-1
Windsurf
Windsurf’s SWE-1 family introduces a revolutionary approach to software engineering, combining AI-driven insights and a shared timeline model to improve every stage of the development process. The SWE-1 models—SWE-1, SWE-1-lite, and SWE-1-mini—extend beyond simple code generation by enhancing tasks like testing, user feedback analysis, and long-running task management. Built from the ground up with flow awareness, SWE-1 is designed to tackle incomplete states and ambiguous outcomes, pushing the boundaries of what AI can achieve in the software engineering field. Backed by performance benchmarks and real-world production experiments, SWE-1 is the next frontier for efficient software development. -
87
OpenAI o4-mini-high
OpenAI
Designed for power users, OpenAI o4-mini-high is the go-to model when you need the best balance of performance and cost-efficiency. With its improved reasoning abilities, o4-mini-high excels in high-volume tasks that require advanced data analysis, algorithm optimization, and multi-step reasoning. It's ideal for businesses or developers who need to scale their AI solutions without sacrificing speed or accuracy. -
88
LTM-1
Magic AI
Magic’s LTM-1 technology facilitates context windows that are 50 times larger than those typically used in transformer models. As a result, Magic has developed a Large Language Model (LLM) that can effectively process vast amounts of contextual information when providing suggestions. This advancement allows our coding assistant to access and analyze your complete code repository. With the ability to reference extensive factual details and their own prior actions, larger context windows can significantly enhance the reliability and coherence of AI outputs. We are excited about the potential of this research to further improve user experience in coding assistance applications. -
89
Samsung Gauss
Samsung
Samsung Gauss is an innovative AI model crafted by Samsung Electronics, designed to serve as a large language model that has been trained on an extensive array of text and code. This advanced model is capable of producing coherent text, translating various languages, creating diverse forms of artistic content, and providing informative answers to a wide range of inquiries. Although Samsung Gauss is still being refined, it has already demonstrated proficiency in a variety of tasks, such as: Following directives and fulfilling requests with careful consideration. Offering thorough and insightful responses to questions, regardless of their complexity or peculiarity. Crafting different types of creative outputs, which include poems, programming code, scripts, musical compositions, emails, and letters. To illustrate its capabilities, Samsung Gauss can translate text among numerous languages, including English, French, German, Spanish, Chinese, Japanese, and Korean, while also generating functional code tailored to specific programming needs. Ultimately, as development continues, the potential applications of Samsung Gauss are bound to expand even further. -
90
CodeGemma
Google
CodeGemma represents an impressive suite of efficient and versatile models capable of tackling numerous coding challenges, including middle code completion, code generation, natural language processing, mathematical reasoning, and following instructions. It features three distinct model types: a 7B pre-trained version designed for code completion and generation based on existing code snippets, a 7B variant fine-tuned for translating natural language queries into code and adhering to instructions, and an advanced 2B pre-trained model that offers code completion speeds up to twice as fast. Whether you're completing lines, developing functions, or crafting entire segments of code, CodeGemma supports your efforts, whether you're working in a local environment or leveraging Google Cloud capabilities. With training on an extensive dataset comprising 500 billion tokens predominantly in English, sourced from web content, mathematics, and programming languages, CodeGemma not only enhances the syntactical accuracy of generated code but also ensures its semantic relevance, thereby minimizing mistakes and streamlining the debugging process. This powerful tool continues to evolve, making coding more accessible and efficient for developers everywhere. -
91
OpenAI o4-mini
OpenAI
The o4-mini model, a more compact and efficient iteration of the o3 model, was developed to enhance reasoning capabilities and streamline performance. It excels in tasks requiring complex problem-solving, making it an ideal solution for users demanding more powerful AI. By refining its design, OpenAI has made significant strides in creating a model that balances efficiency with advanced capabilities. With this release, the o4-mini is poised to meet the growing need for smarter AI tools while maintaining the robust functionality of its predecessor. It plays a critical role in OpenAI’s ongoing efforts to push the boundaries of artificial intelligence ahead of the GPT-5 launch. -
92
Grok 4
xAI
Grok 4, crafted by xAI, is a cutting-edge AI designed to deliver precise, insightful answers across diverse topics. It boasts superior reasoning, refined language processing, and the ability to tackle intricate queries with clarity. Available on grok.com, x.com, and iOS/Android apps, it includes features like voice interaction (iOS-exclusive) and DeepSearch for thorough web-based analysis. Tailored to advance human knowledge, Grok 4 empowers users with dependable, concise responses, making it an essential companion for exploring complex ideas. -
93
LTM-2-mini
Magic AI
LTM-2-mini operates with a context of 100 million tokens, which is comparable to around 10 million lines of code or roughly 750 novels. This model employs a sequence-dimension algorithm that is approximately 1000 times more cost-effective per decoded token than the attention mechanism used in Llama 3.1 405B when handling a 100 million token context window. Furthermore, the disparity in memory usage is significantly greater; utilizing Llama 3.1 405B with a 100 million token context necessitates 638 H100 GPUs per user solely for maintaining a single 100 million token key-value cache. Conversely, LTM-2-mini requires only a minuscule portion of a single H100's high-bandwidth memory for the same context, demonstrating its efficiency. This substantial difference makes LTM-2-mini an appealing option for applications needing extensive context processing without the hefty resource demands. -
94
OpenAI o3-mini-high
OpenAI
The o3-mini-high model developed by OpenAI enhances artificial intelligence reasoning capabilities by improving deep problem-solving skills in areas such as programming, mathematics, and intricate tasks. This model incorporates adaptive thinking time and allows users to select from various reasoning modes—low, medium, and high—to tailor performance to the difficulty of the task at hand. Impressively, it surpasses the o1 series by an impressive 200 Elo points on Codeforces, providing exceptional efficiency at a reduced cost while ensuring both speed and precision in its operations. As a notable member of the o3 family, this model not only expands the frontiers of AI problem-solving but also remains user-friendly, offering a complimentary tier alongside increased limits for Plus subscribers, thereby making advanced AI more widely accessible. Its innovative design positions it as a significant tool for users looking to tackle challenging problems with enhanced support and adaptability.
Overview of AI Coding Models
AI coding models are tools trained to help people write software more efficiently. They’ve learned patterns from a huge amount of existing code and can now suggest snippets, fix bugs, or even generate whole software based on simple instructions. You don’t need to be an expert to use one—just describe what you’re trying to build, and the model tries to fill in the blanks. It's a bit like having a super-fast assistant who’s read every coding tutorial on the internet.
That said, these models aren’t magic. Sometimes they get things wrong or give answers that seem right but don’t actually work. They don’t really “understand” what they’re doing—they just predict what code might come next. It’s still up to developers to double-check results and make smart decisions. Used the right way, though, AI coding tools can seriously cut down on repetitive work and free up time for bigger-picture thinking.
What Features Do AI Coding Models Provide?
- Instant Code Generation from Plain English: You don’t need to know the exact syntax to get started. Just type out what you want—like “build a login form with validation”—and the model spits out working code. It’s a huge time-saver and lowers the entry barrier for folks learning to code or building prototypes quickly.
- Suggests Smarter Ways to Write Code: AI doesn’t just help you complete a line of code—it looks at what you’re trying to build and recommends better or cleaner ways to do it. You might be halfway through a function, and it nudges you with a more efficient approach or flags something unnecessary.
- Picks Up on Potential Errors Early: Rather than waiting for your code to break during testing or runtime, the model keeps an eye out for common pitfalls—missing semicolons, wrong variable names, logic flaws—and brings them up before they become a headache.
- Can Translate Code Between Languages: Need that Python function in JavaScript? Or trying to convert a legacy PHP snippet to Go? These models can handle that with ease. It’s not perfect, but it gets you 80-90% there without manually rewriting everything from scratch.
- Writes Tests Without You Having to Think Too Hard: Testing is important, but writing tests is often the least favorite chore. AI coding tools can scan your code and draft basic unit tests or even some edge-case checks. You can always tweak them afterward, but it’s nice having a head start.
- Keeps Your Codebase Organized and Clean: Some models help restructure or reformat your code, especially if it’s messy or inconsistent. They might suggest breaking large functions into smaller ones, renaming unclear variables, or even just tidying up indentation and spacing.
- Summarizes or Comments on What Code Does: You can highlight a function or module and ask, “What does this do?”—and the model will give you a short explanation. Perfect for reviewing someone else’s work or refreshing your memory on your own older code.
- Scans for Security Issues: If your code has a potential vulnerability—say, you’re not sanitizing inputs or you’re leaving an open endpoint—it can catch that. The suggestions aren’t always exhaustive, but it’s a great extra layer of protection, especially for web apps.
- Adapts to Your Coding Style Over Time: Some AI tools remember how you like to code and tailor their suggestions to match. If you prefer snake_case over camelCase or always use specific libraries, the model starts recommending things that align with your habits.
- Fits Right into Your Favorite Editor: Most coding AIs work directly in editors like VS Code or JetBrains tools. That means no switching between apps or copying and pasting. It feels like a smart sidekick right in your dev environment, chiming in when you need it.
- Accelerates Boilerplate and Setup Tasks: Whether it’s spinning up a new API route or scaffolding the file structure of a project, these tools can lay the groundwork so you can dive straight into the real problem-solving. It handles the repetitive stuff so you don’t have to.
- Supports Collaboration and Team Workflows: In some environments, AI models can summarize changes, flag inconsistencies in pull requests, or even help during pair programming sessions. It helps keep everyone on the same page, whether you're remote or side-by-side.
- Finds and Recommends Libraries You Might’ve Missed: Based on what you're coding, it might suggest useful libraries, APIs, or packages that save you from reinventing the wheel. It’s a handy way to stay up to date without spending hours combing through forums or repositories.
- Explains Errors in Plain English: When something goes wrong and you get an error message, AI can break it down in simpler terms. It might even suggest what line caused it and how to fix it—so you're not stuck googling stack traces all afternoon.
Why Are AI Coding Models Important?
AI coding models are reshaping how developers approach software creation, cutting down the time and mental effort it takes to write, understand, and debug code. Instead of wrestling with syntax or digging through documentation, programmers can rely on these models to suggest functions, explain code, or even write entire blocks from a short prompt. This kind of support not only boosts productivity but also lowers the barrier for newcomers who might otherwise get stuck on technical roadblocks early in the learning process.
On a broader scale, these tools are helping companies ship products faster and with fewer bugs by automating routine tasks and catching issues early. They’re also a bridge between technical and non-technical teams, turning plain English instructions into usable code. While they’re not a complete replacement for skilled developers, AI models act like tireless coding partners—always ready to help, always learning, and constantly improving how we build software from the ground up.
What Are Some Reasons To Use AI Coding Models?
- Cuts Down on Repetitive Coding: Let’s face it — nobody becomes a developer because they love writing the same lines of code over and over. AI models are great at handling repetitive patterns like form validations, API call structures, or basic database operations. They free you up to work on parts of the project that actually need human creativity or complex thinking.
- Keeps Projects Moving When You’re Stuck: Everyone hits a wall now and then. Whether it's writer’s block for code or just being unsure of how to approach a problem, AI tools can nudge you forward. They can offer alternative ways to write a function, suggest fixes, or even explain tricky logic — almost like brainstorming with a teammate who’s always available.
- Great for Exploring New Languages or Frameworks: When you’re diving into something unfamiliar — say, switching from Angular to Vue or trying out Rust for the first time — AI can help flatten the learning curve. It suggests code that fits the language’s idioms, handles syntax correctly, and nudges you toward best practices without needing to dig through pages of documentation.
- Boosts Focus on Bigger Picture Problems: Instead of sweating the small stuff, like tweaking the same layout element five different ways, AI lets you spend your time thinking about architecture, performance, or how the product fits the user’s needs. That’s a big win for both developers and companies trying to ship more thoughtful, impactful software.
- Gives Helpful Context at the Right Time: One of the underrated perks of AI in your editor is that it’s context-aware. It doesn’t just spew out random code — it reads the file, understands the function you're working on, and tries to tailor its suggestions to match what you’re doing. That relevance means you’re not sifting through generic copy-paste snippets from the internet.
- Encourages Cleaner, More Readable Code: Whether it’s naming a variable clearly or refactoring a messy loop into something more elegant, AI tools often lean toward more readable solutions. Over time, this can subtly improve your own habits and make your code easier for others (and your future self) to understand.
- Handy for Writing Quick Tests: Let’s be honest — writing tests isn’t everyone’s favorite part of the job. But it’s important. AI coding assistants can knock out unit tests in a pinch, especially for straightforward logic. You still need to review and tweak them, but they take the edge off the grunt work.
- Makes Documentation Less of a Chore: Nobody loves documenting every function or parameter, but AI makes it easier to keep documentation from falling behind. It can generate docstrings or comments as you go, which saves time and helps your teammates understand what’s happening without asking for explanations every time.
- Supports Junior Developers Without Micromanaging: If you’re leading a team or mentoring newer developers, AI tools can serve as a helpful safety net. They give juniors a bit more confidence to try things on their own, while still offering guidance. That means you get fewer Slack messages asking how to write a for-loop in TypeScript — and they grow faster, too.
- Helps You Stay in the Flow: Switching tabs constantly to search Stack Overflow or read API docs kills momentum. With AI built into your IDE, you can stay in your zone. Quick questions get answered right there, suggestions appear as you type, and you avoid breaking your rhythm every time you need a reminder about syntax.
Types of Users That Can Benefit From AI Coding Models
- Startup Founders Trying to Move Fast: Founders building early-stage products often wear every hat imaginable, and coding is just one of many tasks on their plate. AI coding tools let them move quickly — whether it’s spinning up a prototype, debugging a payment flow, or generating backend logic. It’s like adding a silent partner who writes clean code at 2 a.m.
- Students Learning to Code: Whether you're cramming for a CS midterm or doing your tenth LeetCode problem of the day, AI can be a huge help. It explains tricky concepts in plain English, shows you how code works line by line, and gives you quick examples to learn from — without making you feel dumb for asking basic questions.
- Technical Project Managers: These folks might not be writing production code, but they still need to understand what’s going on under the hood. With AI tools, they can draft pseudo-code, read sample scripts, or get help understanding how features are built — so they can speak more confidently with engineering teams.
- Freelancers Juggling Multiple Tech Stacks: Contract developers and freelancers often jump between projects that use completely different technologies. AI coding assistants are perfect for bridging those knowledge gaps — whether it’s helping you remember syntax in Go or showing how to handle form validation in a new JavaScript framework.
- People Building Side Projects After Work: If you’re working a 9-to-5 but coding for fun (or future fortune) on the side, AI coding tools can help you maximize your limited time. Instead of losing 30 minutes Googling a bug, you can ask the model, get a fix, and get on with building your app, website, or game.
- Data Analysts Automating the Boring Stuff: Folks who live in spreadsheets but want to level up with code can use AI to automate recurring data tasks. Need a Python script to clean messy CSVs or a quick SQL query for a dashboard? The model’s got you covered — even if you’ve never written a full software before.
- Designers Dipping Their Toes into Code: Some designers want more control over how things work in the browser — maybe tweaking CSS directly or experimenting with animations. AI tools can walk them through basic HTML, CSS, or JavaScript without overwhelming them with jargon or expecting them to know how to use a terminal.
- Engineers Dealing with Legacy Codebases: Maintaining old software is like archaeology. If you're diving into ancient code with zero documentation, AI can help translate cryptic logic, summarize what each file is doing, or suggest cleaner, modern alternatives — saving hours of pain and guesswork.
- People Who Don’t Code Full-Time But Need to Occasionally: Maybe you're a marketer trying to update your website, or an operations lead who needs a script to automate a weekly report. You don’t want to become a developer — you just want a working script. AI can help you write exactly what you need, without making you commit to a coding career.
- Teachers Looking for Ways to Engage Students: Educators can use AI to create examples, quizzes, or interactive code problems tailored to whatever topic they’re teaching. They can even explore how students might misunderstand a topic, and use the AI’s feedback to guide those learners more effectively.
- Security Engineers Hunting for Vulnerabilities: Not all threats are obvious, and reviewing code manually takes time. AI coding tools can spot potential issues, flag dangerous patterns, and even explain why something might be vulnerable. It’s like having a second set of eyes for security audits.
- System Admins and IT Pros Who Script on the Side: People in these roles don’t always identify as “coders,” but they write plenty of scripts to manage infrastructure, troubleshoot issues, or automate user setup. AI can quickly generate PowerShell, Bash, or Python snippets — even explain unfamiliar commands in plain terms.
- Folks Exploring AI Through Code: Whether you're building your own chatbot or testing out a computer vision project, AI coding tools help you break into the machine learning space. They can scaffold models, show you how to fine-tune parameters, or help you wrap everything up in a simple app.
- People Creating Interactive Art or Installations: Artists who code use AI to experiment with visuals, sound, and interactivity. From generating creative Processing sketches to designing touch-based experiences, AI models offer a fresh spark that blends logic and creativity.
How Much Do AI Coding Models Cost?
Using AI coding models isn't always cheap, and how much you spend really depends on what you need them for. If you're just experimenting or building small projects, the cost can be manageable—sometimes even free with limited access. But once you scale up, especially for regular or heavy use, the bills start to climb. You're paying for computing power, data processing, and the smarts built into the model. That adds up quickly if you're running complex code generations or using it for long development sessions.
There’s also more to the cost than just the sticker price. You might need to invest time in getting everything up and running—plugging it into your existing workflow, dealing with quirks, or making sure it doesn’t spit out something it shouldn’t. Some folks end up spending a good chunk of change not just on using the tool, but on making it work well for their team. And if your business depends on it running smoothly, you’ll probably want the faster, more reliable access plans, which naturally cost more.
What Do AI Coding Models Integrate With?
AI coding models can connect with all kinds of software, especially the ones that are already built for handling code or managing development tasks. For example, many text editors and developer tools can hook into AI models to offer real-time code help, like writing functions, spotting errors, or converting plain English into usable code. These tools don’t just make life easier for seasoned developers—they also help beginners get up to speed faster by filling in the gaps and guiding them through complex logic. Even automation platforms that run scripts or build pipelines can use AI to fine-tune processes or generate configurations on the fly.
Beyond coding tools, software used in data science, website building, and system operations can also benefit from AI coding support. Applications that handle big data often use scripts to clean, move, or analyze information, and AI can write those scripts without needing human input every time. Systems that manage servers or run regular checks can pull in AI-generated code to patch things up, roll out updates, or tweak performance settings. Even design-focused tools that need a bit of behind-the-scenes coding—like custom HTML or APIs—can lean on AI to bridge the creative and technical sides. As long as the software is set up to communicate with the AI through an interface like an API, there's room for tight, useful integration.
AI Coding Models Risks
- Code that “Looks Right” but Fails in Practice: AI-generated code can be syntactically perfect and even elegant, but still completely wrong when it runs. It may have logic errors, unsafe assumptions, or edge cases that aren't handled. Developers might trust it too easily without testing thoroughly.
- Security Gaps You Might Miss: These models sometimes produce code with hidden vulnerabilities like injection flaws, insecure API use, or poor input validation. Without strict security checks, these slip-ups could end up in production, opening the door to serious exploits.
- License Violations and IP Headaches: Some code suggestions come from copyrighted material—even if the model doesn’t cite it. If that code had restrictive licensing (like GPL), you could unintentionally violate legal terms by copying it into your own work. It’s a legal gray zone that’s not fully resolved yet.
- Over-Reliance Can Erode Coding Skills: Constantly leaning on AI for help may lead newer developers to skip the learning curve. If the model does most of the work, there's less incentive to understand the fundamentals, which can become a problem when debugging or designing systems from scratch.
- Inconsistent Output Across Contexts: AI models don’t always behave predictably. The same prompt might produce different results depending on subtle changes in phrasing or previous prompts. This can make them unreliable in workflows that demand precision or repeatable results.
- Bias in Code Suggestions: Since these models are trained on real-world code — including old or flawed practices — they might reproduce outdated patterns or biases (e.g., assuming gendered variable names, or suggesting insecure defaults). These inherited quirks can sneak into modern codebases if not caught.
- False Sense of Security from Testing Help: While some models generate unit tests, they often don't cover edge cases or validate logic thoroughly. Developers might assume the AI-generated tests are enough, but in reality, they often miss complex behavior, giving a misleading sense of safety.
- Context Limits Can Hide the Bigger Picture: Even the best models have a cap on how much code they can “see” at once. If you're working on a large codebase, it might generate something that doesn’t fit with the surrounding code, breaks patterns, or introduces subtle conflicts—especially in legacy systems.
- Lack of Transparency in Decision-Making: AI tools rarely explain why they chose a specific approach. Without a rationale, developers are left guessing whether the model’s suggestion is a shortcut, a best practice, or just random. This opacity is especially problematic when decisions have high stakes.
- Accidental Exposure of Sensitive Info: If developers use cloud-based AI models to process internal code, there's a risk of unintentionally uploading proprietary or sensitive information. Depending on the service, that data might be stored or used to train future models, which could breach confidentiality policies.
- Toolchain Lock-In and Ecosystem Dependence: Companies that heavily embed AI into their workflows risk becoming overly dependent on a specific vendor’s tooling. If access is cut off, pricing changes, or the model’s behavior shifts, teams may face sudden disruption without an easy fallback.
What Are Some Questions To Ask When Considering AI Coding Models?
- How well does this model handle the programming languages we use most? It’s not enough that an AI model says it “supports multiple languages.” You need to know how strong it really is with the specific languages your team codes in every day. A model might do great with Python but stumble over something like C++, Rust, or even older enterprise languages like Java or .NET. Ask for examples, demos, or benchmark data tied directly to your stack.
- Can the model keep up with the pace of our work? Latency matters. If your developers are waiting 10–15 seconds for a suggestion to appear, it’s going to kill productivity. Speed isn’t just a nice-to-have—it’s a necessity. Test how quickly the model delivers usable code suggestions, especially in an IDE setting. Also, find out if performance drops off under heavier workloads.
- Is this thing going to cost us a fortune over time? Some AI tools start off cheap or even free, but the moment your team starts leaning on them heavily, the costs creep up fast. Look into the pricing structure: is it usage-based, seat-based, or something else? And what happens to your bill when usage scales? Make sure you understand what’s included and what’s not—especially when it comes to model updates or custom training.
- Does this model protect the code and data we feed it? Security is a big deal. If your company’s source code or customer data ends up training someone else’s AI model, you’ve got a serious problem. Ask if the provider stores prompts and completions, whether they use your data for training, and what kind of encryption or safeguards they use. If you’re in a regulated industry, you'll need clear answers for compliance too.
- What does integration into our existing tools look like? Some models are API-only, others come with ready-made plugins or extensions for IDEs like VS Code, JetBrains, or Eclipse. Figure out whether you'll need to do a bunch of custom work to get everything connected. The easier it is to embed into your team’s workflow, the more likely it’ll actually get used and make a difference.
- Can we tweak or fine-tune the model for our own use cases? Out-of-the-box models are great for general tasks, but most companies have their own style, standards, or domain-specific logic. Ask if you can train the model further on your own codebase or inject custom context. The more flexible the model is, the more value you’ll get from it long-term.
- How explainable or transparent is the code it generates? Even if the AI spits out something that works, your developers still need to understand it. You don’t want your team relying on black box code. Look for a model that produces output that’s easy to follow, commented where it makes sense, and logically structured. It shouldn’t feel like deciphering hieroglyphics every time.
- What kind of support or community exists around this model? Support isn’t just about having someone you can email when things break. It’s also about having documentation that doesn’t suck, a user community that shares solutions, and ongoing updates that show the company is in it for the long haul. You want a model backed by a team that’s responsive and transparent.
- What are the model’s known weak spots? Every model has limits. Some struggle with long-term context. Others mess up on edge cases. Don’t settle for marketing fluff—ask the provider directly what the model doesn’t do well. Knowing the weak spots up front helps you plan around them instead of getting blindsided later.
- How much control do we have over how it’s used across our teams? This one’s about governance. Can you monitor how your developers use the tool? Can you set policies to restrict how it handles sensitive code? If you’re deploying it across multiple teams, you’ll want to avoid a free-for-all where people are using it in risky or inconsistent ways.