NEO functions as an autonomous machine learning engineer, embodying a multi-agent system designed to seamlessly automate the complete ML workflow, allowing teams to assign data engineering, model development, evaluation, deployment, and monitoring tasks to an intelligent pipeline while retaining oversight and control. This system integrates sophisticated multi-step reasoning, memory management, and adaptive inference to address intricate challenges from start to finish, which includes tasks like validating and cleaning data, model selection and training, managing edge-case failures, assessing candidate behaviors, and overseeing deployments, all while incorporating human-in-the-loop checkpoints and customizable control mechanisms. NEO is engineered to learn continuously from outcomes, preserving context throughout various experiments, and delivering real-time updates on readiness, performance, and potential issues, effectively establishing a self-sufficient ML engineering framework that uncovers insights and mitigates common friction points such as conflicting configurations and outdated artifacts. Furthermore, this innovative approach liberates engineers from monotonous tasks, empowering them to focus on more strategic initiatives and fostering a more efficient workflow overall. Ultimately, NEO represents a significant advancement in the field of machine learning engineering, driving enhanced productivity and innovation within teams.