Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!


Forgot your password?
Check out the new SourceForge HTML5 internet speed test! No Flash necessary and runs on all devices. Also, Slashdot's Facebook page has a chat bot now. Message it for stories and more. ×

Developing New Materials With Space Science 62

Scientists at the European Space Agency are using techniques inspired by their experience with outer space to make new and better products here on Earth. Certain compounds and alloys which are not normally viable can be made in different ways once forces such as gravity are removed from the equation. From BBC News: "The near absence of gravity (microgravity) has a profound influence on the way molten metals come together to form intermetallics and 'standard' alloys. With no 'up' and 'down' in the space environment, a melt doesn't rise and sink as it would at the planet's surface and that means solidification can turn out very differently. 'Gravity induces a lot of segregation of the elements,' explains IMPRESS scientist Dr Guillaume Reinhart. 'For instance, tantalum and niobium are heavy atoms and in doing the solidification process on the ground, they will segregate in different places and produce a very heterogeneous material. If you do this in microgravity, you obtain a very homogenous material because you prevent separation; and you have a much more efficient material, mechanically.'"

Slashdot Top Deals

Real computer scientists don't comment their code. The identifiers are so long they can't afford the disk space.