Become a fan of Slashdot on Facebook

 



Forgot your password?
typodupeerror
×

Comment Re:Titan or Bust! (Score 1) 69

I think your confusion stems from analogy to baking clay or ceramics. But what's happening there is sintering. You have extremely fine grains, and you're leading certain crystals to soften and merge as a "glue" between grains, so that the grains stay together.

While sintering is important in the formation of some types of sedimentary rock, this has nothing whatsoever to do with igneous rock. It's already as "together" as it's ever going to be when it a lava flow solidifies. The only thing its grains can ever become is "less together".

And even ignoring that, by definition, you're not going to be sintering something that formed at Venus temperatures, by exposing them to Venus temperatures. The process of sintering requires a radical change in conditions.

Comment Re:Titan or Bust! (Score 1) 69

We are not capable of building anything that can withstand the surface pressures and temperatures for very long

The Venera probes have likely still not experienced any sort of crushing. You seem to be confused about how pressure works. If you don't exert stress pass the yield point of a material, the length of time until something crushes is "infinite". Which is why, say, almost all rocks buried in Earth's crust are able to remain intact over millions to billions of years.

You build of a thickness that the yield point at the design temperature is well above the amount of pressure-induced stress. The Venera probes' pressure vessels - uninsulated - hit surface temperature quite quickly (indeed, mostly during the descent itself). This did not make them crush, because their engineers were not morons who didn't do the math first when determining the probes' required specs.

All probes are designed to their environment. There is nothing magical about the nominal 92 MPa / 464 C of Venus's mean surface (note: this is for the mean surface; the highlands are significantly lower pressure and significantly cooler) that makes it impossible while, say, designing a lander to operate in the cryogenic conditions of Titan or whatnot is easy. This is 1960s tech. Steel alloys usually melt at up to 1400 C or so. Titanium at 1670 C. Tungsten at 3422 C. Some ceramics don't decompose until nearly 4000C. And pressure increases melting points. Now, it's not just the melting point that matters - higher temperatures mean lower yield strengths, so you have to design with the high temperature yield strengths in mind, not room temperature ones. But the simple fact is that various alloys and compounds can operate fine at WAY above Venus surface temperatures. It's not even close. The pressure vessel needed for the Venera probes was just a thin skin.

And to repeat: if the stress doesn't don't go above the yield point, the time to crushing is infinite. Same as any other pressure vessel, from aerosol cans to propane tanks to spacecraft in space (-1 atm).

And I'll repeat: with the same trivially-simple 1960s-tech method as the Venera probes, you can get surface residence times of a couple hours. With heat pumps, indefinitely. And "Baron_Yam at Slashdot" isn't going to override the actual NASA researchers who have worked on this topic.

The rock of Venus is dry-baked to incredible strength

The fact that you think that rock can be "baked to incredible strength" is itself a boggling concept. Not even accounting for the fact that we can literally see sand and gravel in the Venera images, and the Venera probes literally took surface samples. We can see dunes from orbit on radar. Just the very concept that you think that if you heat rock to a couple hundred celsius that makes it super hard, when the rock formed from vastly-hotter lava. Heat makes rock softer, not harder. And subliming away compounds or chemically eroding rocks makes them weaker, not stronger.

From a bulk composition perspective, Venus's surface is mostly just basalt - though there's some probable rhyolitic flows in places, possibly some unusual flows rare or nonexistent on Earth, and there's speculation that some of the highlands may contain residual granitic continental crust. The specific details of said rocks can be quite interesting, but from a bulk perspective, it's like oceanic crust. We know this because we've literally sampled it..

Comment Re:Titan or Bust! (Score 1) 69

That's a lot of text to not mention the need to build floating cities and not die on the surface, which even NASA has not been able to do for more than a few minutes

In case you didn't notice, NASA also hasn't built cities on Mars either, despite spending two orders of magnitude more money on it in recent decades than Venus.

Anyway, we don't need the most Earthlike atmosphere, we need to survive in an environment where we actually know how to do that.

Which requires creating Earthlike conditions. Starting with reasonably Earthlike conditions certainly is a good start.

Comment Re:What kind of books? (Score 3, Insightful) 154

A real book may be readable 2000 years from now. Your Kindle book may not work tomorrow.

        I was originally skeptical about "digital rot", but after publishing maybe 150-200 technical papers and a similar number of "chart packages" over the last 40ish years, 100% of those I have on paper are still good, and the ones I published last week are about 50/50 on whether they are corrupted or unreadable. Similarly, my library of my predecessors' work dating back to 1956, 100% good on the paper documents.

Same thing with various supposedly "eternal" internet/web documents, those die even more quickly.

      People worried about this all becoming a "blank" generation leaving no permanent record are absolutely right.

Comment Re:Titan or Bust! (Score 2) 69

Venus's middle cloud layer is the most Earthlike place in the solar system apart from Earth**, is energy-abundant, has favourable orbital dynamics, easy entry, and the simple act of storing electricity for the night via reversible fuel cells - if plumbed in a cascade - can enrich deuterium (2 1/2 orders of magnitude more abundant on Venus), a natural export commodity, if launch costs are sufficiently low. The atmosphere contains CHONP, S, Cl, F, noble gases, and even small amounts of iron. Pretty much everything you need to build a floating habitat, which can be lofted by normal Earth air, aka people can live inside the envelope. Aka, unlike on Mars, where you live in a tiny tin can pressure vessel where any access to the outside tracks in toxic electrostatic dust and you waste away from low gravity, on Venus you'd be in a massive, brightly lit hanging garden, where you could live half a kilometer from a crewmate if they really got on your nerves.

Most Earthlike? Yes. Temperature, pressure, gravity, etc all similar. Natural radiation shielding equivalent to half a dozen meters or so of water over your head. Even storms seem to be of an Earthlike distribution. The "sulfuric acid" is overblown; it's a sparse vog, with visibility of several kilometers; with a face mask, you could probably stand outside in shirtsleeves, feeling an alien wind on your skin, only risking dermatitis if you stayed outside for too long.

Indeed, it'd actually be useful if the sulfuric vog was more common (to be fair, it's still unclear whether precipitation happens, and if so, whether rains or snows; the Vega data is disputed). Why? Because it's your main source of hydrogen. Highly hygroscopic and easily electrostatically attracted, so readily scrubbed through your propulsion system. First releases free water vapour when heated, then decomposes to more water plus SO3, and if you want you can further decompose the SO3 over a vanadium pentoxide catalyst to O2 + SO2, or you can reinject it into the scrubber as a conditioning agent to seed more water vapour. Of course, if precipitation happens, collection possibilities are basically limitless.

The surface is certainly hostile, but even 1960s Soviet technology was landing on it (also, contrary to popular myth, there is no acid at the surface; it's unstable at those temperatures, the sulfur inventory is only SO2 there). But in many ways, the surface is very gentle. Mars eats probes with its hard landings, but one Venera probe outright lost its parachute during descent and still landed intact, as the dense atmosphere slows one's fall. It's been calculated that with the right trajectory, a simple hollow titanium sphere launched from Earth could arrive at Venus, enter, descend and land all intact. Simple thermal inertia (insulation + a phase change material) can keep an object cool for a couple hours; with heat pumps, indefinitely (and yes, heat pumps and power sources for the surface conditions have been designed). Even humans could walk there with insulated hard suits, like atmospheric diving suits. Indeed, some of the first space suits NASA designed for the moon (ultimately ditched for weight reasons, despite the superior mobility performance) were similarly jointed hard-shell suits.

On Venus's surface, a lander or explorer can literally fly, via a compressible metal bellows balloon. Small wings / fins can allow for long glide ratios. Loose surface material can be dredged rather than requiring physical excavation, potentially with the same fan used for propulsion. Reversible ascent back to altitude can be done with phase change balloons - that is, at altitude, a lifting gas condenses and is collected in a valved container, and the craft can descend; at the surface, when one desires to rise, the valve is opened and the gas re-lofts the lander.

On Mars, you're stuck in one location. The problem is that all minerals aren't found in the same spot; different processes concentrate different minerals. And you can't exactly just get on a train to some other spot on the planet; long-distance travel requires rockets, and all their consumables. But on Venus the atmosphere superrotates every several days (rate depending on altitude and latitude), while latitude shifts in a floating habitat or lander can be done with minimal motor requirements. So vast swaths of the planet are available to you. Furthermore, Venus is far more dramatic in terms of natural enrichment processes; wide ranges of minerals are sublimated or eaten out of rocks and then recondensed elsewhere. Temperatures and pressures vary greatly between the highlands and lowlands as well. There even appear to be outright semiconductor frosts on parts of the planet. Lava flows show signs of long cooling times, which promotes fractionalization and pegmatites. Volcanism is common, primarily basaltic but also potentially secondary rhyolitic sources. A variety of unusual flows with no earth analogies (or only rare ones) show signs of existing, including the longest "river" channel in the solar system (Baltis Vallis). While there's no global tectonic activity, there appear to be areas of intense local buckling between microplates. The surface conditions of the planet also appear to have been very different at many times in the past. It's all a perfect setup for having diverse mineral enrichment processes. Yet there's almost no overburden (unlike Mars, which is covered in thick overburden on most of the planet).

As mentioned before, Venus has significantly superior orbital dynamics to Mars, due to the Oberth effect. Venus-Mars transfers are almost as fast and almost as low energy as Earth-Mars transfers. Venus-Earth transits are super-fast, esp. with extra delta-V added. The asteroid belt is, contrary to intuition, much more accessible from Venus than from Mars. Also, gravity assists are much more common around Venus - when we want to launch probes to the outer solar system, we generally start with sending them first inwards toward Venus, then back between Venus and Earth and outwards from there.

From a long term perspective, both Venus and Mars have problems with terraforming, with some things you can do "relatively easy", and some that require megascale engineering on scales best left to fantasy. You can boil off Mars's polar caps, but the amount of CO2 there is still quite limited, and there's just not that much nitrogen inventory on the planet (it's been lost to space), which also matters to plant cultivation. You could probably engineer active radiation shielding from orbit, maybe direct more light to the surface, but you can't increase the gravity. Etc.

With Venus, one of the earliest ideas for terraforming it was from Carl Sagan, before the planet was known well; he proposed seeding it with engineered bacteria to convert CO2 to graphite and release oxygen. He later rejected his idea, on the grounds that a high temperature surface of graphite and oxygen would be a bomb. Later studies showed that the timescales for said conversion would be tens of thousands to millions of years. But in a way, that is actually a savior to his idea, in that Venus's rocks contain unoxidized minerals. In analogy to the Great Oxygen Catastrophe on Earth that created our banded iron formations, slowly exposed to oxygen, Venus's rocks would weather and sequester the oxygen and deposited carbon. Hot, high-pressure high-oxygen conditions would never have a chance to exist.

Various faster methods have been proposed. A common one is that of the soletta, a thin orbital sunshade. Another is building an "alternative surface", aka propagating floating colonies to the point that they are the new surface - and indeed, below that surface, they could exclude sunlight to the below atmosphere. Regardless of the method, the cooler the atmosphere gets, the lower its pressure gets, to the point that you can start outright precipitating out the atmosphere out as icecaps.

Just like Mars will never have high gravity and probably never much nitrogen, Venus would probably never be fully Earthlike. It would have enough nitrogen that, barring loss to weathering, people would have a constant mild nitrogen narcosis, like always being ever so slightly tipsy. It would remain a desert planet, barring massive influxes of ice (which present their own challenges and problems), or of hydrogen (pre-cooling). But then again, the very concept of terraforming anything has always required one to put on thick rose-coloured glasses ;)

I don't say all this to diss on Mars. But our obsession with "surface conditions" has led us to ignore the fact that if you're going to the extremes of engineering an off-world habitat, having it be airborne is not that radical of an additional ask, esp. on a planet with such a big "fluffy" atmosphere as Venus. If Venus's atmosphere stopped at its Earthlike middle cloud layer, if there was a surface there, nobody would be talking about long-term habitation on Mars - the focus would have been entirely Venus. But we can still have habitats there. The habitat can, in whole or part, even potentially be its own reentry vehicle (ballute reentry), and certainly at least inflate and descend as a ballute (with a small supply of Earth-provided helium as a temporary lifting gas until an Earthlike atmosphere can be produced). Unlike with Mars entry, you're never going to be "off course", or "crash into something" because you got the location or altitude wrong.

(Getting back to orbit is certainly challenging from Venus - all that gravity that's good for your body has its downsides - but the TL/DR is, hybrid and/or air-augmented nuclear thermal rockets look by far to be the best option. Far less hydrogen needed than chemical rockets, far lighter relative to their deliverable payload, only a single stage needed, and in some designs have the ability to hover without consuming fuel. This is, of course, of great benefit for docking with a habitat, avoiding the need for descending rocket stages to deploy balloons and then to dock those to the habitat. The hydrogen and mass budgets involved are totally viable)

Comment Ebooks (Score 1) 154

I think realistically most people that read a lot have moved onto e-books. Just like physical copies of video games or music are dying, so are physical copies of books. Not only is it convenient, but realistically the cost to "publish" an ebook is effectively nothing.

Comment Re:Titan or Bust! (Score 1) 69

Aside from proximity, Mars is better suited to colonization than the moon.

There's a minor atmosphere that makes traditional flight possible, and evens out the temperature swings a bit.
The day/night cycle is nearly identical to Earth so solar arrays are more practical (compared to lunar days lasting 28 Earth days).
The gravity is higher (38% of Earth's gravity compared to 17%), so muscle atrophy and general disorientation should be less severe compared to the lunar surface. On the other hand this does make it harder to get back off the surface and into orbit again.
While both likely have "enough" water, Mars has more.

The only thing the moon offers that's better is for resupply or emergency scenarios, Earth is just a hop and a skip away.

Comment Re: It's called work (Score 1) 222

The tragedy is that nobody actually wants peace enough to make it happen. All it would take is the U.N. declaring all of Israel to be a demilitarized zone, ordering the Israeli government and Hamas to both disarm, shooting anyone who refuses to comply, and then keeping those million or so troops in that region to help rebuild, slowly drawing down the number of troops over... say 200 years, so that by the time they are gone, no one alive still remembers the horrors of this day.

So rather than them hating each other, they'll be united in their hatred for the UN.

Nobody wants anyone coming into their home and telling them what to do. The issue between Israel and Palestine is that both of them consider the land theirs, and and foreign interference that sides with one side will be hated by the other, and any that supports neither side or both sides equally will be hated by both sides.

The reality is that the elites of both sides want to fight . . . but realistically Israel is the side that will come out on top militarily, so the Palestinian leaders have to be willing to come to the table and negotiate. They're not getting one state, and they're not getting any historic territory back - not without land swaps anyways.

Come to the table. Draw up official borders and have nothing to do with each other. Israel doesn't control what goes on in Gaza's borders and they become an independent state (maybe united with the West Bank, maybe West Bank becomes its own separate country - who knows). After that though, any attack from EITHER side against the other is an act of war. There is no more fighting, no more trying to reclaim ancestral lands - you have your territory and you stay there in peace.

Comment Re:power (Score 2) 69

Titan's atmosphere is rather calm; not an issue. At the surface, the winds measured by Huygens were 0,3 m/s.

You actually can use solar power in extreme environments - even Venus's surface has been shown to be compatible with certain types solar, though you certainly get very poor power density. Dragonfly, as noted above, uses an RTG.

Comment Re:Second flying drone to explore another planet (Score 3) 69

Planetary scientists frequently refer to moons that are large enough to be in hydrostatic equilibrium as planets in the literature. Examples, just from a quick search:

"Locally enhanced precipitation organized by planetary-scale waves on Titan"

"3.3. Relevance to Other Planets" (section on Titan)

"Superrotation in Planetary Atmospheres" (article covers Titan alongside three other planets)

"All planets with substantial atmospheres (e.g., Earth, Venus, Mars, and Titan) have ionospheres which expand above the exobase"

"Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere"

"... of the planet. However, rather than being scarred by volcanic features, Titan's surface is largely shaped..."

"Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum" (okay, it's mainly referring to the Jovian satellites as planets, but same point)

"Superrotation indices for Solar System and extrasolar atmospheres" - contains a table whose first column is "Planet", and has Titan in the list, alongside other planets

Etc. This is not to be confused with the phrase "minor planet", which is used for asteroids, etc. In general there's a big distinction in how commonly you see the large moons in hydrostatic equilibrium referred to as "planets" and with "planetary" adjectives, vs. smaller bodies not in hydrostatic equilibrium.

Comment Re:Titan or Bust! (Score 3, Informative) 69

Why?

NASA's obsession with Mars is weird, and it consumes the lion's share of their planetary exploration budget. We know vastly more about Mars than we know of everywhere else except Earth.

This news here is bittersweet for me. I *love* Titan - it and Venus are my two favourite worlds for further exploration, and dragonfly is a superb way to explore Titan. But there's some sadness in the fact that they're launching it to an equatorial site, so we don't get to see the fascinating hydrocarbon seas and the terrain sculpted by them near the poles. I REALLY wish they were going to the north pole instead :( In theory they could eventually get there, but the craft would have to survive far beyond design limits and get a lot of mission extensions. At a max pace of travel it might cover 600 meters or so per Earth day on average. So we're talking like 12 years to get to the first small hydrocarbon lakes and ~18 years to get to Ligeia Mare or Punga Mare (a bit further to Kraken Mare), *assuming* no detours, vs. a 2 1/2 year mission design. And that ignores the fact that they'll be going slower in the start - the nominal mission is only supposed to cover 175km, just a few percent of the way, under 200 metres per day. Sigh... Maybe it'll be possible to squeeze more range out of it once they're comfortable with its performance and reliability, but... it's a LONG way to the poles.

At least if it lasts for that long it'll have done a full transition between wet and dry cycles, which should last ~15 years. So maybe surface liquids will be common at certain points, rare in others.

Comment Re:Air Conditioning (Score 0) 110

That's very glib. But it is clearly obvious that air conditioning could mitigate the effects of heat on the sensitive. I note that your "heat wave" is normal temperatures for most of the USA, we don't have people keeling over dead on New Orleans/Houston streets every July.

Having air conditioning would definitely reduce the death count and is a practical solution that can be implemented right now, for relatively cheap. But you apparently want to wait around for a perfect solution in the indefinite future (or more likely, never), damn the death count- instead of an implementable partial solution now,

Comment It's better than waiting in the drive-through (Score 1) 20

Every time I go past the In-n-Out Burger and see 40-50 cars lined up to talk into a scratchy intercom and wait half an hour to get food, I think how much more convenient it would be if all of those people could just park their car wherever they wanted (or even not have to get into their car at all), enter their order into an app on their phone, and have their food lowered down to them by a drone.

There'd be no more congestion issues, no need to spend 30 minutes idling in a slowly-advancing car lineup, and no need to repeat your order three times so a teenager can still get it wrong. You might have to deal with gangs of crows trying to intercept your order mid-delivery, though.

Slashdot Top Deals

Intel CPUs are not defective, they just act that way. -- Henry Spencer

Working...