Best Time Series Databases for Hadoop

Find and compare the best Time Series Databases for Hadoop in 2025

Use the comparison tool below to compare the top Time Series Databases for Hadoop on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Prometheus Reviews
    Enhance your metrics and alerting capabilities using a top-tier open-source monitoring tool. Prometheus inherently organizes all data as time series, which consist of sequences of timestamped values associated with the same metric and a specific set of labeled dimensions. In addition to the stored time series, Prometheus has the capability to create temporary derived time series based on query outcomes. The tool features a powerful query language known as PromQL (Prometheus Query Language), allowing users to select and aggregate time series data in real time. The output from an expression can be displayed as a graph, viewed in tabular format through Prometheus’s expression browser, or accessed by external systems through the HTTP API. Configuration of Prometheus is achieved through a combination of command-line flags and a configuration file, where the flags are used to set immutable system parameters like storage locations and retention limits for both disk and memory. This dual method of configuration ensures a flexible and tailored monitoring setup that can adapt to various user needs. For those interested in exploring this robust tool, further details can be found at: https://sourceforge.net/projects/prometheus.mirror/
  • 2
    Warp 10 Reviews
    Warp 10 is a modular open source platform that collects, stores, and allows you to analyze time series and sensor data. Shaped for the IoT with a flexible data model, Warp 10 provides a unique and powerful framework to simplify your processes from data collection to analysis and visualization, with the support of geolocated data in its core model (called Geo Time Series). Warp 10 offers both a time series database and a powerful analysis environment, which can be used together or independently. It will allow you to make: statistics, extraction of characteristics for training models, filtering and cleaning of data, detection of patterns and anomalies, synchronization or even forecasts. The Platform is GDPR compliant and secure by design using cryptographic tokens to manage authentication and authorization. The Analytics Engine can be implemented within a large number of existing tools and ecosystems such as Spark, Kafka Streams, Hadoop, Jupyter, Zeppelin and many more. From small devices to distributed clusters, Warp 10 fits your needs at any scale, and can be used in many verticals: industry, transportation, health, monitoring, finance, energy, etc.
  • 3
    Google Cloud Bigtable Reviews
    Google Cloud Bigtable provides a fully managed, scalable NoSQL data service that can handle large operational and analytical workloads. Cloud Bigtable is fast and performant. It's the storage engine that grows with your data, from your first gigabyte up to a petabyte-scale for low latency applications and high-throughput data analysis. Seamless scaling and replicating: You can start with one cluster node and scale up to hundreds of nodes to support peak demand. Replication adds high availability and workload isolation to live-serving apps. Integrated and simple: Fully managed service that easily integrates with big data tools such as Dataflow, Hadoop, and Dataproc. Development teams will find it easy to get started with the support for the open-source HBase API standard.
  • Previous
  • You're on page 1
  • Next