OpenELM Description
OpenELM is a family of open-source language models created by Apple. By employing a layer-wise scaling approach, it effectively distributes parameters across the transformer model's layers, resulting in improved accuracy when compared to other open language models of a similar scale. This model is trained using datasets that are publicly accessible and is noted for achieving top-notch performance relative to its size. Furthermore, OpenELM represents a significant advancement in the pursuit of high-performing language models in the open-source community.
OpenELM Alternatives
Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
LM-Kit.NET
LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents.
Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development.
Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
Learn more
Cerebras-GPT
Training cutting-edge language models presents significant challenges; it demands vast computational resources, intricate distributed computing strategies, and substantial machine learning knowledge. Consequently, only a limited number of organizations embark on the journey of developing large language models (LLMs) from the ground up. Furthermore, many of those with the necessary capabilities and knowledge have begun to restrict access to their findings, indicating a notable shift from practices observed just a few months ago.
At Cerebras, we are committed to promoting open access to state-of-the-art models. Therefore, we are excited to share with the open-source community the launch of Cerebras-GPT, which consists of a series of seven GPT models with parameter counts ranging from 111 million to 13 billion. Utilizing the Chinchilla formula for training, these models deliver exceptional accuracy while optimizing for computational efficiency. Notably, Cerebras-GPT boasts quicker training durations, reduced costs, and lower energy consumption compared to any publicly accessible model currently available. By releasing these models, we hope to inspire further innovation and collaboration in the field of machine learning.
Learn more
Gemma 2
The Gemma family consists of advanced, lightweight models developed using the same innovative research and technology as the Gemini models. These cutting-edge models are equipped with robust security features that promote responsible and trustworthy AI applications, achieved through carefully curated data sets and thorough refinements. Notably, Gemma models excel in their various sizes—2B, 7B, 9B, and 27B—often exceeding the performance of some larger open models. With the introduction of Keras 3.0, users can experience effortless integration with JAX, TensorFlow, and PyTorch, providing flexibility in framework selection based on specific tasks. Designed for peak performance and remarkable efficiency, Gemma 2 is specifically optimized for rapid inference across a range of hardware platforms. Furthermore, the Gemma family includes diverse models that cater to distinct use cases, ensuring they adapt effectively to user requirements. These lightweight language models feature a decoder and have been trained on an extensive array of textual data, programming code, and mathematical concepts, which enhances their versatility and utility in various applications.
Learn more
Integrations
No Integrations at this time
Company Details
Company:
Apple
Year Founded:
1976
Headquarters:
United States
Website:
apple.com
Media
Recommended Products
Our Free Plans just got better! | Auth0
You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
Product Details
Platforms
Web-Based
iPhone App
iPad App
Types of Training
Training Docs
OpenELM Features and Options
OpenELM Lists
OpenELM User Reviews
Write a Review- Previous
- Next