Vertex AI
Fully managed ML tools allow you to build, deploy and scale machine-learning (ML) models quickly, for any use case.
Vertex AI Workbench is natively integrated with BigQuery Dataproc and Spark. You can use BigQuery to create and execute machine-learning models in BigQuery by using standard SQL queries and spreadsheets or you can export datasets directly from BigQuery into Vertex AI Workbench to run your models there. Vertex Data Labeling can be used to create highly accurate labels for data collection.
Vertex AI Agent Builder empowers developers to design and deploy advanced generative AI applications for enterprise use. It supports both no-code and code-driven development, enabling users to create AI agents through natural language prompts or by integrating with frameworks like LangChain and LlamaIndex.
Learn more
Teradata VantageCloud
Teradata VantageCloud: Open, Scalable Cloud Analytics for AI
VantageCloud is Teradata’s cloud-native analytics and data platform designed for performance and flexibility. It unifies data from multiple sources, supports complex analytics at scale, and makes it easier to deploy AI and machine learning models in production. With built-in support for multi-cloud and hybrid deployments, VantageCloud lets organizations manage data across AWS, Azure, Google Cloud, and on-prem environments without vendor lock-in. Its open architecture integrates with modern data tools and standard formats, giving developers and data teams freedom to innovate while keeping costs predictable.
Learn more
Amazon SageMaker
Amazon SageMaker is a comprehensive machine learning platform that integrates powerful tools for model building, training, and deployment in one cohesive environment. It combines data processing, AI model development, and collaboration features, allowing teams to streamline the development of custom AI applications. With SageMaker, users can easily access data stored across Amazon S3 data lakes and Amazon Redshift data warehouses, facilitating faster insights and AI model development. It also supports generative AI use cases, enabling users to develop and scale applications with cutting-edge AI technologies. The platform’s governance and security features ensure that data and models are handled with precision and compliance throughout the entire ML lifecycle. Furthermore, SageMaker provides a unified development studio for real-time collaboration, speeding up data discovery and model deployment.
Learn more
Posit
Posit delivers a comprehensive ecosystem for modern data science, uniting open-source technologies with enterprise-grade collaboration and deployment tools. Positron, its free data-science IDE, blends the immediacy of a console with powerful debugging, editing, and production capabilities for Python and R developers. Posit’s suite of products allows organizations to securely host analytical content, automate reporting, and operationalize models with confidence. With strong support for open-source tooling, the company enables teams to build on transparent, extensible technologies they can fully trust. Cloud solutions simplify how users store, access, and scale their projects while maintaining reproducibility and governance. Customer success stories from organizations like Dow, PING, and the City of Reykjavík highlight the impact of Posit-powered applications in real-world environments. Posit also fosters a thriving community, offering resources, events, champions programs, and extensive documentation. Built by data scientists for data scientists, Posit helps teams adopt open-source data science practices at enterprise scale.
Learn more