Best Data Management Software for Apache Kudu

Find and compare the best Data Management software for Apache Kudu in 2024

Use the comparison tool below to compare the top Data Management software for Apache Kudu on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    E-MapReduce Reviews
    EMR is an enterprise-ready big-data platform that offers cluster, job, data management and other services. It is based on open-source ecosystems such as Hadoop Spark, Kafka and Flink. Alibaba Cloud Elastic MapReduce is a big-data processing solution that runs on the Alibaba Cloud platform. EMR is built on Alibaba Cloud ECS and is based open-source Apache Spark and Apache Hadoop. EMR allows you use the Hadoop/Spark ecosystem components such as Apache Hive and Apache Kafka, Flink and Druid to analyze and process data. EMR can be used to process data stored on different Alibaba Cloud data storage services, such as Log Service (SLS), Object Storage Service(OSS), and Relational Data Service (RDS). It is easy to create clusters quickly without having to install hardware or software. Its Web interface allows you to perform all maintenance operations.
  • 2
    Hadoop Reviews

    Hadoop

    Apache Software Foundation

    Apache Hadoop is a software library that allows distributed processing of large data sets across multiple computers. It uses simple programming models. It can scale from one server to thousands of machines and offer local computations and storage. Instead of relying on hardware to provide high-availability, it is designed to detect and manage failures at the application layer. This allows for highly-available services on top of a cluster computers that may be susceptible to failures.
  • 3
    Apache Spark Reviews

    Apache Spark

    Apache Software Foundation

    Apache Spark™, a unified analytics engine that can handle large-scale data processing, is available. Apache Spark delivers high performance for streaming and batch data. It uses a state of the art DAG scheduler, query optimizer, as well as a physical execution engine. Spark has over 80 high-level operators, making it easy to create parallel apps. You can also use it interactively via the Scala, Python and R SQL shells. Spark powers a number of libraries, including SQL and DataFrames and MLlib for machine-learning, GraphX and Spark Streaming. These libraries can be combined seamlessly in one application. Spark can run on Hadoop, Apache Mesos and Kubernetes. It can also be used standalone or in the cloud. It can access a variety of data sources. Spark can be run in standalone cluster mode on EC2, Hadoop YARN and Mesos. Access data in HDFS and Alluxio.
  • 4
    Apache NiFi Reviews

    Apache NiFi

    Apache Software Foundation

    A reliable, easy-to-use, and powerful system to process and distribute data. Apache NiFi supports powerful, scalable directed graphs for data routing, transformation, system mediation logic, and is scalable. Apache NiFi's high-level capabilities and goals include a web-based user interface that provides seamless design, control, feedback and monitoring. Highly configurable, loss-tolerant, low latency and high throughput. Dynamic prioritization is also possible. Flow can be modified at runtime by back pressure, data provenance, and track dataflow from start to finish. This is a flexible system that is extensible. You can build your own processors. This allows for rapid development and efficient testing. Secure, SSL, SSH and HTTPS encryption, as well as encrypted content. Multi-tenant authorization, internal authorization/policy administration. NiFi includes a variety of web applications, including web UI, web API, documentation and custom UI's. You will need to map to the root path.
  • 5
    Apache Flink Reviews

    Apache Flink

    Apache Software Foundation

    Apache Flink is a distributed processing engine and framework for stateful computations using unbounded and bounded data streams. Flink can be used in all cluster environments and perform computations at any scale and in-memory speed. A stream of events can be used to produce any type of data. All data, including credit card transactions, machine logs, sensor measurements, and user interactions on a website, mobile app, are generated as streams. Apache Flink excels in processing both unbounded and bound data sets. Flink's runtime can run any type of application on unbounded stream streams thanks to its precise control of state and time. Bounded streams are internal processed by algorithms and data structure that are specifically designed to process fixed-sized data sets. This results in excellent performance. Flink can be used with all of the resource managers previously mentioned.
  • 6
    BigBI Reviews
    BigBI allows data specialists to create their own powerful Big Data pipelines interactively and efficiently, without coding! BigBI unleashes Apache Spark's power, enabling: Scalable processing of Big Data (upto 100X faster). Integration of traditional data (SQL and batch files) with new data Sources include semi-structured data (JSON, NoSQL DBs and Hadoop) as well as unstructured data (text, audio, video). Integration of streaming data and cloud data, AI/ML graphs & graphs
  • Previous
  • You're on page 1
  • Next