Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Average Ratings 0 Ratings

Total
ease
features
design
support

No User Reviews. Be the first to provide a review:

Write a Review

Description

MLflow is an open-source suite designed to oversee the machine learning lifecycle, encompassing aspects such as experimentation, reproducibility, deployment, and a centralized model registry. The platform features four main components that facilitate various tasks: tracking and querying experiments encompassing code, data, configurations, and outcomes; packaging data science code to ensure reproducibility across multiple platforms; deploying machine learning models across various serving environments; and storing, annotating, discovering, and managing models in a unified repository. Among these, the MLflow Tracking component provides both an API and a user interface for logging essential aspects like parameters, code versions, metrics, and output files generated during the execution of machine learning tasks, enabling later visualization of results. It allows for logging and querying experiments through several interfaces, including Python, REST, R API, and Java API. Furthermore, an MLflow Project is a structured format for organizing data science code, ensuring it can be reused and reproduced easily, with a focus on established conventions. Additionally, the Projects component comes equipped with an API and command-line tools specifically designed for executing these projects effectively. Overall, MLflow streamlines the management of machine learning workflows, making it easier for teams to collaborate and iterate on their models.

Description

Pachyderm's Data Versioning offers teams an efficient and automated method for monitoring all changes to their data. With file-based versioning, users benefit from a comprehensive audit trail that encompasses all data and artifacts at each stage of the pipeline, including intermediate outputs. The data is stored as native objects rather than mere metadata pointers, ensuring that versioning is both automated and reliable. The system can automatically scale by utilizing parallel processing for data without the need for additional coding. Incremental processing optimizes resource usage by only addressing the differences in data and bypassing any duplicates. Additionally, Pachyderm’s Global IDs simplify the tracking of results back to their original inputs, capturing all relevant analysis, parameters, code, and intermediate outcomes. The intuitive Pachyderm Console further enhances user experience by providing clear visualizations of the directed acyclic graph (DAG) and supports reproducibility through Global IDs, making it a valuable tool for teams managing complex data workflows. This comprehensive approach ensures that teams can confidently navigate their data pipelines while maintaining accuracy and efficiency.

API Access

Has API

API Access

Has API

Screenshots View All

Screenshots View All

Integrations

Determined AI
Aporia
Axolotl
Azure Machine Learning
Cranium
Dagster
Databricks Data Intelligence Platform
H2O.ai
IBM Databand
Label Studio
LiteLLM
Modulos AI Governance Platform
OpenMetadata
Ragas
Superwise
TrueFoundry
UbiOps
Unity Catalog
Vectice
lakeFS

Integrations

Determined AI
Aporia
Axolotl
Azure Machine Learning
Cranium
Dagster
Databricks Data Intelligence Platform
H2O.ai
IBM Databand
Label Studio
LiteLLM
Modulos AI Governance Platform
OpenMetadata
Ragas
Superwise
TrueFoundry
UbiOps
Unity Catalog
Vectice
lakeFS

Pricing Details

No price information available.
Free Trial
Free Version

Pricing Details

No price information available.
Free Trial
Free Version

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Deployment

Web-Based
On-Premises
iPhone App
iPad App
Android App
Windows
Mac
Linux
Chromebook

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Customer Support

Business Hours
Live Rep (24/7)
Online Support

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Types of Training

Training Docs
Webinars
Live Training (Online)
In Person

Vendor Details

Company Name

MLflow

Founded

2018

Country

United States

Website

mlflow.org

Vendor Details

Company Name

Pachyderm

Website

www.pachyderm.com

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Product Features

Machine Learning

Deep Learning
ML Algorithm Library
Model Training
Natural Language Processing (NLP)
Predictive Modeling
Statistical / Mathematical Tools
Templates
Visualization

Alternatives

Alternatives

Prevision Reviews

Prevision

Prevision.io
Union Cloud Reviews

Union Cloud

Union.ai
Keepsake Reviews

Keepsake

Replicate