Catch up on stories from the past week (and beyond) at the Slashdot story archive


Forgot your password?

Slashdot videos: Now with more Slashdot!

  • View

  • Discuss

  • Share

We've improved Slashdot's video section; now you can view our video interviews, product close-ups and site visits with all the usual Slashdot options to comment, share, etc. No more walled garden! It's a work in progress -- we hope you'll check it out (Learn more about the recent updates).


Comment: Re:Can someone explain this to me? (Score 1) 192

by pow(b,2) (#30686968) Attached to: Factorization of a 768-Bit RSA Modulus
GPU's are far less useful for the general number field sieve, and any other algorithm is completely useless to factor interesting sized RSA keys. This is because sieving is a memory intensive process which doesn't lend itself well to GPU architectures. Something drastic, as it relates to factoring, means the emergence of a new algorithm.

Comment: Re:Bad math... (Score 4, Informative) 192

by pow(b,2) (#30686852) Attached to: Factorization of a 768-Bit RSA Modulus
Cryptographic strength, as applied to RSA keys, is measured by the time needed to factor the public modulus. The fastest way to do this is today is using the general number field sieve. The run time of the general number field sieve can be estimated as T(b) = exp(1.923 * ln(2^b)^(1/3) * (ln( ln(2^b)))^(2/3)), where b is the size of the input in bits. See Aoki's paper on a kilobit SNFS factorization for details. Chug through this estimate for b = 1024 and b = 768, and you'll find that the ratio is approximately 1000 (I got 1221.15). That's why 1024 bit RSA keys are approximately 1000 times stronger.

"Well, if you can't believe what you read in a comic book, what *can* you believe?!" -- Bullwinkle J. Moose