Slashdot is powered by your submissions, so send in your scoop

 



Forgot your password?
typodupeerror

Comment Re:Venus (Score 1) 299

Plant cultivation is far, far harder on Mars, for many reasons.

1) Natural light: the solar constant is 1/5th as much on Mars as on Venus, and you're guaranteed to have dust clinging to your greenhouse glazing. More on this later.

2) Electricity: Same for solar power. And fission power systems (as opposed to radiothermal, which is far too weak) are 1) a rather expensive line-item to your development costs, 2) heavy to transport, and 3) complex (complexity is not good when it comes to operation in space). Beyond this, most people vastly underestimate how much power it takes to grow plants under lights - you need 1-2 orders of magnitude more area of solar panels than the area of plants you can grow. And the size of the LED lighting systems you'd need is very significant in its own right. Plants consume way more light to grow than most people give them credit for. The real world isn't The Martian where one can grow potatoes on normal room lights ;)

3) Room: Abundant, practically unlimited space comes free with a Venus colony. Space is extremely expensive on a Mars colony - it's a pressure vessel. Another downside to limited space: plants don't like it. It leads to humidity and temperature instabilities and buildups of gases like ethylene that are far more poisonous to plants than carbon monoxide is to humans. These gases break down, particularly in sunlght, so in big areas they're not a huge problem - but in confined spaces, they can deform and kill your plants readily. Pests and diseases also thrive much more in confined spaces.

(My comments on plants come from experience: I grow a small "jungle" in an indoor environment, entirely on artificial light)

So, while it is of course possible to grow plants on Mars, it's far, far easier on Venus.

As for opressiveness, once a wall is opaque, you can't really perceive how thick it is.

Indeed, I wasn't talking about wall thickness :) Just the issue of being enclosed in small spaces. Most designs call for integrating as many windows as they can, but that's always going to be limited - windows are a lot heavier for a given amount of surface area and can't be shielded for radiation exposure.

And I'm not sure how attractive Venus would be in comparison

So, you don't get a landscape, that's true - the surface isn't visible there. But at the desirable altitudes, there is still a "view", the clouds are dynamic there. A few kilometers further up and it's just a continuous haze (which may lead to rainbow effects below, there are some papers debating this ;) ), but in the "earthlike" layers clouds will come and go. Like living among the clouds on Earth.

But no, you don't get a landscape outside. Your landscape is the Garden of Eden you make inside, surrounded by clouds. :)

There's also those ever-present lightning storms all around you - that's going to be noisy, and a serious maintenance issue

The current state of research isn't "ever-present lightning". Again, unfortunately our knowledge of Venus is so poor compared to Mars, so it's hard to make definitive statements. But lightning appears to be "about" as common on Venus as it is on Earth.

Another thing that we need to learn more about is atmosphere variation. We've seen what appears to be significant variations in sulfur levels on Venus over time - it seems that the sulfur may be the result of frequent or continuous volcanic activity. So how the atmosphere will vary over time is an important question to be able to answer before we can send humans.

And how do you plan to prevent lightning strikes through your habitat?

Again, we don't know the distribution of lightning between a) different altitude layers, b) different latitudes, and c) over time. We actually don't know at this point if it's ever a risk at all - and if it ever is, whether it's avoidable or not. If it's not avoidable, then yes, one would need lightning protection (I presume faraday cage-style rather than any sort of ion shield), which would add mass and require a more difficult testing regime. If it is avoidable, or is never a problem: then there's no issue.

Definitely need more data on this one before we can send humans! It's time to stop neglecting Venus.

but since you're in the middle of the cloud layer they won't actually be getting anywhere near as much sunlight as they would in orbit, maybe not even as much as they would on Earth or Mars

Actually no :) The light levels at acceptable flight altitudes (~51-55km) are comparable to Earth on a clear day (except that you also have almost as much light also reflecting up at you as coming down at you). Depending on the frequency, it blocks about half of the light from the sun - but twice as much light hits Venus. Mars, however, gets 40% as much light as on Earth - when the dust isn't blowing. Sometimes you get dust storms which can last for months, easily enough to kill plants from lack of sunlight.

Note that solar panels don't have to be outside the envelope, if the envelope is transparent (which I've been assuming thusfar). They can even be built into structural elements (for example, solar roofs on shelters or walkways). It'd cost under 10% of the power, and in turn they'd be shielded from winds, lightning (if a risk), icing (if a risk), corrosion, etc, and your wiring needs would be greatly reduced. I really don't see a point to having anything outside the envelope except for the return rocket (even that's not 100% necessary, but probably a lot easier than a rocket-sized drop-bay ;).

If the ambient pressure is ~1atm, then you have roughly as much air above you as you would on Earth, but without a magnetosphere you're going to be counting on that air to block a lot more radiation.

I read a paper about this before but can't be bothered to dig it up again ;) Okay, okay, just a second.... hmm, this may have been the one. They simulated the Carrington Event and one previous one that was even stronger, and found that even they wouldn't be problematic at 62km (let alone a more realistic 53-54km, which has orders of magnitude more atmosphere over it). That is to say, they calculate 0,09Gy. Radiation therapy in humans is 45-80Gy. A CT scan is 0,008 Gy. So it's like getting a dozen CT scans, but nothing like undergoing radiation therapy. And that's at a much higher altitude than people would actually live at. Long-term GCR at actual colony height, according to their graphs, would be about 1e-8Gy/20h, or 4,4e-6Gy/year - not at all "dangerous". Levels are indeed higher than on Earth, but they're not problematic like they are on Mars. You don't need added shielding, you're sitting under a mass of shielding equivalent to a ~5 meter tall column of water. And the atmosphere above you creates a small induced magnetic field to boot.

Comment Re:Better transistors? (Score 1) 196

And if they're having a significant reduction in power consumption, then adding more cores gets all the easier.

Its always seemed to me that the best approach to processing is to offer a variety of cores and let the scheduler handle what to put where. You can have one or two extremely fast cores, half a dozen moderate speed cores, and dozens or more low speed cores - why insist that all cores be the same in "general purpose" computing?

Comment Re:Caller ID Blocker (Score 2) 194

Back when I lived in the states (I've never gotten a single telemarking call here in Iceland) I've often been tempted to respond with, "Why should I buy your product when I'm going to kill myself as soon as I get off the phone?" Suddenly making their job waaaay more stressful than they expected when they picked up the phone.

Never did it, but... ;) Honestly, I just couldn't get myself to be that mean to them, they're just normal people on the other end working menial, low paying jobs.

Comment Re:Fusion energy is impractical (Score 4, Interesting) 80

Fast neutrons can impact any isotope and destroy it in that regard, but that says nothing about the long-term structural stability of the bulk material. Different materials have different annealing properties. More to the point, slow neutrons can do the same thing, just in a different manner (that is, (n, gamma), instead of (n, random-ions-and-neutrons)). Fast neutrons are overall more damaging (and of course more penetrating... although we're not talking about spallation neutrons here with energies up into the GeVs, we're only talking 14,1 MeV) - but they're not some sort of whole different ball game. I am, of course, assuming you're talking about structural issues. If you're talking about from the perspective of how radioactive it will become, tell me, how hot does beryllium get under heavy bombardment? Boron carbide? Graphite? I could keep going. In fact, I did, further up the thread.

There are many reasons to complain about various designs, but your over-generalized statement is anything but some kind of universal rule. And really, the sort of flexibility of materials that fusion allows versus fission more than compensates for having to deal with higher neutron energies.

Comment Re:Caller ID Blocker (Score 2) 194

I have several games I play with them. One is to make myself sound very old with a feeble voice, forcing them to listen closer, then scream bloody murder. Another starts the same but I kite them along until they want an identification of some nature. Then I tell them "I can't remember, I'll get my credit card." This engenders the desire to wait. Then I quietly set the phone down and go about my business.

There are others, but those two are the most fun.

Comment Re:This is completely awesome (Score 5, Informative) 80

Interestingly enough, for d-t fusion, the neutrons are not an unwanted waste product, but actually essential. Tritium doesn't grow on trees, you have to make it. And more importantly, d-t fusion only gives off one neutron, and it takes one neutron captured by 6Li to breed 1 tritium (you can also make tritium from 7Li bombardment and not consume the neutron, but due to the cross sections and energies involved its usually not as interesting). So if you use one neutron to make the fuel that produces one neutron, and you can't capture 100% of the neutrons, you're in trouble! You get around this by using a lithium-beryllium blanket, as beryllium is a good neutron "multiplier" (capturing one high energy neutron and yielding two lower energy neutrons). It's also rare, expensive as heck and its dusts are highly toxic, but it's consumed at a tiny rate, so it's mainly just an initial cost (heavy elements like lead can also be used as multipliers but they're not very effective in this context, their cross sections don't extend down as far as beryllium and their (n, Xn) reactions where X>2 don't make up for it). So basically, while you lose some neutrons to unwanted reactions, you overall end up producing enough to produce enough tritium for your reactor to consume. The key point is, you want the neutrons to be hitting your reactor, they're doing you a service ;)

There will of course be unwanted neutron captures, but when you engineer it you're choosing specifically what materials are going to be bombarded, so you can pick materials with low neutron capture cross sections and which capture to isotopes that are either stable or have short half lives. Concrete is great for how cheap it is (light elements in general are, and concrete is mostly made of light stuff). As far as metals go, aluminum is great where heat loads or mechanical stresses aren't excessive. Beryllium is even better, as well as stronger and lighter... but see the aforementioned issues with it. Steel is "okay", usually fine if you're careful about what you alloy it with. You generally want to avoid titanium. Graphite is superb if you run it hot enough (otherwise you risk Wigner energy problems). Composites likewise, although they're more temperature limited. Most common ceramics are made of light elements, which makes them very good to use, although those with heavy elements (like tungsten carbide) should be avoided. Tungsten in general should be avoided unless necessary. Some ceramics like boron carbide/nitride are highly heat and corrosion tolerant, high compressive strength, huge neutron absorbers and don't yield dangerous byproducts, which lets them fit multiple roles at once - so long as there's little tensile or shear stresses. In some cases you may want more of a neutron "window", wherein things like zirconium or lead would be good - particularly specific isotopes of them if you're willing to pay for enrichment. It all depends on the operating environment and geometry.

Slashdot Top Deals

It is contrary to reasoning to say that there is a vacuum or space in which there is absolutely nothing. -- Descartes

Working...