Catch up on stories from the past week (and beyond) at the Slashdot story archive

 



Forgot your password?
typodupeerror

Slashdot videos: Now with more Slashdot!

  • View

  • Discuss

  • Share

We've improved Slashdot's video section; now you can view our video interviews, product close-ups and site visits with all the usual Slashdot options to comment, share, etc. No more walled garden! It's a work in progress -- we hope you'll check it out (Learn more about the recent updates).

×

+ - UK Scientists Claim 1Tbps Data Speed via Experimental 5G Technology

Submitted by Mark.JUK
Mark.JUK (1222360) writes "A team of Scientists working at the University of Surrey in England claim to have achieved, via an experimental lab test, performance of 1Tbps (Terabit per second) over their candidate for a future 5G Mobile Broadband technology. Sadly the specifics of the test are somewhat unclear, although it's claimed that the performance was delivered by using 100MHz of radio spectrum bandwidth over a distance of 100 metres.

The team, which forms part of the UK Government's 5G Innovation Centre, is supported by most of the country's major mobile operators as well as BT, Samsung, Fujitsu, Huawei, the BBC and various other big names in telecoms, media and mobile infrastructure. Apparently the plan is to take the technology outside of the lab for testing between 2016 and 2017, which would be followed by a public demo in early 2018.

In the meantime 5G solutions are still being developed, with most in the early experimental stages, by various different teams around the world. Few anticipate a commercial deployment happening before 2020 and we’re still a long way from even defining the necessary standard."

+ - BT Unveils 1000Mbps Capable G.fast Broadband Rollout for the United Kingdom

Submitted by Mark.JUK
Mark.JUK (1222360) writes "The national telecoms operator for the United Kingdom, BT, has today announced that it will begin a country-wide deployment of the next generation hybrid-fibre G.fast (ITU G.9701) broadband technology from 2016/17, with most homes being told to expect speeds of up to 500Mbps (Megabits per second) and a premium service offering 1000Mbps will also be available.

At present BT already covers most of the UK with hybrid Fibre-to-the-Cabinet (FTTC) technology, which delivers download speeds of up to 80Mbps by running a fibre optic cable to a local street cabinet and then using VDSL2 over the remaining copper line from the cabinet to homes. G.fast follows a similar principal, but it brings the fibre optic cable even closer to homes (often by installing smaller remote nodes on telegraph poles) and uses more radio spectrum (17-106MHz) over a shorter remaining run of copper cable (ideally less than 250 metres).

The reliance upon copper cable means that the real-world speeds for some, such as those living furthest away from the remote nodes, will probably struggle to match up to BT’s claims. Never the less many telecoms operators see this as being a more cost effective approach to broadband than deploying a pure fibre optic / Fibre-to-the-Home (FTTH) network."

+ - TWEETHER Project Promises 10Gbps mmW 92-95GHz Based Wireless Broadband-> 1

Submitted by Mark.JUK
Mark.JUK (1222360) writes "A new project called TWEETHER, which is funded by Europe's Horizon 2020 programme, has been setup at Lancaster University (England) with the goal of harnessing the millimetre wave (mmW) radio spectrum (specifically 92-95GHz) in order to deploy a new Point to Multipoint wireless broadband technology that could deliver peak capacity of up to 10Gbps (Gigabits per second). The technology will take 3 years to develop and is expected to help support future 5G based Mobile Broadband networks."
Link to Original Source

+ - Scientists Build 7 Core Fibre Optic Cable for Record Speeds of 255 Tbps

Submitted by Mark.JUK
Mark.JUK (1222360) writes "A team of researchers at the Eindhoven University of Technology (Netherlands) have built a new fibre optic cable with seven cores, which when combined with wavelength division multiplexing (i.e. harnessing the different colors of laser light to carry data) has enabled them to deliver a transmission speed of 255 Terabits per second (Tbps) over a single 1km long link."

+ - Samsung Achieve Outdoor 5G Mobile Broadband Speed of 7.5Gbps

Submitted by Mark.JUK
Mark.JUK (1222360) writes "Samsung has successfully become the first to demonstrate a future 5G mobile network running at speeds of 7.5Gbps (Gigabits per second) in a stationary outdoor environment, but to cap that achievement off they also delivered 1.2Gbps while using the same technology and driving around a 4.3km long race track at speeds of up to 110Kph.

Crucially the test was run using the 28GHz radio spectrum band, which ordinarily wouldn't be much good for mobile networks where wide coverage and wall penetration is an important requirement. But Samsung claims it can mitigate at least some of that by harnessing the latest Hybrid Adaptive Array Technology (HAAT), which uses millimeter wave frequency bands to enable the use of higher frequencies over greater distances.

Several companies are competing to develop the first 5G technologies, although consumers aren't expected to see related services until 2020 at the earliest."

+ - BT and Huawei Push 3Tbps Down Existing 359km Commercial Fibre Optic Link

Submitted by Mark.JUK
Mark.JUK (1222360) writes "The United Kingdom's national telecoms operator, BT, has teamed up with Chinese IT firm Huawei to push data speeds of 3Tbps (Terabits per second) over an existing real-world 359km long fibre optic link by harnessing a "record spectral efficiency" of 5.97bit/s/Hz and commercial grade hardware and software.

The real-time 3Tbps super channel comprised of 15 x 200Gbps (16-QAM) sub channels, bundled together to provide combined capacity, and these were separated by as little as 33.5GHz in order to achieve the claimed spectral efficiency. In the future such connections could help to feed the ever rising capacity demands of mobile operators and ISPs, which are themselves attempting to cater for growing consumer broadband usage and ideally without having to build expensive new fibre optic links."

+ - "Word Record" as Single Laser and Fibre Optic Cable Delivers 43 Tbps

Submitted by Mark.JUK
Mark.JUK (1222360) writes "A research group working out of the Technical University of Denmark claims to have broken "another world record" in fibre optic data transfers after they were able to demonstrate speeds of 43 Terabits per second over a single laser and fibre optic cable (67km long), which is theoretically much closer to real-world connections than most other lab tests where multiple lasers and cables can be used.

Professor Leif Oxenløwe of DTU Fotonik said that his team had "used all the known, neat tricks that exist nowadays to make data in five dimensions: time, frequency, polarization, quadrature and space”. However one such "neat trick" is the decision not to use a traditional single core cable and to instead adopt a 7 core (glass threads) design from Japanese telecoms firm NNT.

Admittedly the new fibre optic cable does not take up any more space than the standard single-core version, but it's still a new cable and thus perhaps the "world record" claims aren't quite comparing apples to apples."

+ - Alcatel-Lucent's XG-FAST Pushes 10,000Mbps over Copper Phone Lines

Submitted by Mark.JUK
Mark.JUK (1222360) writes "The Bell Labs R&D division of telecoms giant Alcatel-Lucent has today claimed to set a new world record after they successfully pushed "ultra-broadband" speeds of 10,000 Megabits per second (Mbps) down a traditional copper telephone line using XG-FAST technology, which is an extension of G.fast (ITU G.9700).

G.fast is a hybrid-fibre technology, which is designed to deliver Internet speeds of up to 1000Mbps over shorter runs of copper cable (up to around 250 meters via 106MHz+ of radio spectrum). The idea is that a fibre optic cable is taken closer to homes and then G.fast works to deliver the last few metres of service, which saves money because the operator doesn't have to big up your garden to lay new cables.

By comparison XG-FAST works in a similar way but via an even shorter run of copper and using frequencies of up to 500MHz. For example, XG-FAST delivered its top speed of 10,000Mbps by bonding two copper lines together over just 30 metres of cable. But this might be a problem for commercial operators, which will want to maximise profits by using more copper to reach more homes and not less."

+ - EU Consumers Expected to Demand 165Mbps Broadband by 2020

Submitted by Mark.JUK
Mark.JUK (1222360) writes "Cable Europe, the official trade association for cable telecoms and TV operators across the continent, has published a new study with cable ISP NL Kabel that claims to predict that consumers will be demanding average broadband download speeds of 165Mbps (Megabits per second), with uploads of 20Mbps, by the year 2020. At an extreme around 2% of all users are also predicted to demand 1000Mbps (1 Gigabit per second).

The research is based off a "quantitative model", which was designed by a team working out of the Technical University of Eindhoven and Dialogic to predict demand for Internet speeds in the coming years. But equally some might view it as a piece of self-serving research by those parties with an interest in cable and one that conflicts with other studies. What a person "needs" remains very much subjective, balanced against how they use the technology and their expectations."

+ - Aston University to Halt World Fibre Optic Internet "Capacity Crunch" with PEACE

Submitted by Mark.JUK
Mark.JUK (1222360) writes "A team of international scientists working out of Aston University in England have pledged to tackle the pending Internet "capacity crunch" in major fibre optic networks through a new GBP1.5 million project called Petabit Energy Aware Capacity Enhancement (PEACE), which aims to "significantly" improve bandwidth and reduce energy consumption on related networks by mitigating the signal distortion that exists in existing cables.

According to Professor Ellis of Aston's Institute for Photonic Technologies, related signals "have been amplified to such an extent that they are now more intense than sunlight at the surface of the Earth’s atmosphere" and this causes the distortion. But PEACE intends to tackle this by using a balance of digital, analogue electronic and optical processing to halve the energy consumption of optical transponders and boost bandwidth.

"We will increase network capacity by maximising spectral use, and developing techniques to combat the nonlinear effects induced by the high intensities encountered in today’s networks," said Professor Ellis."

+ - Huawei Successfully Tests New 802.11ax WiFi Standard at 10.53Gbps 1

Submitted by Mark.JUK
Mark.JUK (1222360) writes "Chinese ICT developer Huawei has confirmed that it was able to achieve a record transmission data rate of 10.53Gbps on 5GHz frequency bands in laboratory trials of their new 802.11ax WiFi (WLAN) wireless networking standard. The testing, which was conducted at Huawei’s campus in Shenzhen, used a mix of MIMO-OFDA, intelligence spectrum allocation, interference coordination and hybrid access to achieve the result and the new technology could hit the market during 2018."

+ - EU Court of Justice Paves Way for "Right to be Forgotten" Online

Submitted by Mark.JUK
Mark.JUK (1222360) writes "The European Court of Justice (ECJ) has today ruled that Google, Bing and others, acting as internet search engine operators, are responsible for the processing that they carry out of personal data which appears on web pages published by third parties. As a result any searches made on the basis of a person’s name that returns links/descriptions for web pages containing information on the person in question can, upon request by the related individual, be removed.

The decision supports calls for a so-called "right to be forgotten" by Internet privacy advocates, which ironically the European Commission are already working to implement via new legislation. Google failed to argue that such a decision would be unfair because the information was already legally in the public domain."

+ - Ericsson and NTT DOCOMO Trial 5G Mobile Broadband at 10Gbps

Submitted by Mark.JUK
Mark.JUK (1222360) writes "Japanese mobile operator NTT DOCOMO has announced that they'll make use of Ericsson's advanced antenna technologies and radio base stations in order to conduct one of the world’s first trials of a possible 5G based Mobile Broadband technology in Yokosuka (Japan), which aims to deliver downstream speeds of more than 10 Gigabits per second using the 15GHz radio spectrum frequency. But this is just one possible candidate for 5G connectivity and many organisations are still working to try and define an official standard, while most countries don't expect the first services to be deployed until around the year 2020."

+ - 11-Year UK Study Reports No Health Danger from Mobile Phone Transmissions

Submitted by Mark.JUK
Mark.JUK (1222360) writes "The United Kingdom's 11-years long Mobile Telecommunications and Health Research Programme (MTHR) has today published a comprehensive report that summarises 31 research projects, which investigated the potential for biological or adverse health effects of mobile phone and wireless signals on humans (e.g. as a cause for various cancers or other disorders).

The good news is that the study, which has resulted in nearly 60 papers appearing in peer-reviewed scientific journals, found "no evidence" of a danger from mobile transmissions in the typically low frequency radio spectrum bands (e.g. 900MHz and 1800MHz etc.). So if you’re wearing them, you can finally remove those tin foil hats."

+ - BT and Alcatel-Lucent Record Real-World Fibre Optic Speed of 1.4Tbps in the UK

Submitted by Mark.JUK
Mark.JUK (1222360) writes "The United Kingdom's national telecoms operator, BT, has successfully teamed up with Alcatel-Lucent to conduct a field trial that delivered real-world data speeds of 1.4 Terabits per second over an existing commercial-grade 410km fiber optic link. The trial used a “record spectral efficiency” of 5.7 bits per second per Hertz and Flexgrid technology to vary the gaps between transmission channels for 42.5% greater data transmission efficiency than today’s standard networks.

The speed was achieved by overlaying an “Alien Super Channel” (i.e. it operates transparently on top of BT’s existing optical network), which bundled together 7 x 200Gbps (Gigabits per second) channels and then reduced the “spectral spacing” between the channels from 50GHz to 35GHz using the 400Gb/s Photonic Services Engine (PSE) technology on the 1830 Photonic Service Switch (PSS). It's hoped that this could help boost capacity to those who need it without needing to lay expensive new fiber cables."

One can't proceed from the informal to the formal by formal means.

Working...