Follow Slashdot blog updates by subscribing to our blog RSS feed

 



Forgot your password?
typodupeerror

Comment Re:sunfire / in my stellerator / makes me... happy (Score 1) 94

So on average the fission reactor material only has about 10% of its atoms displaced over the lifetime, while the fusion reactor would have, on average, every atom displaced hundreds of times over the lifetime.

How can you make generalized statements like that? Cross sections vary by many orders of magnitude Fission reactors are generally made of steel, which is hardly setting any records in terms of low cross sections. The smaller the reactor, the less material you have to replace, and the more expensive the material you can use. And being "displaced" is not a fundamental universal material property effect, it depends on how the material responds to radiation damage, which varies greatly. Generally materials respond better at high temperatures (annealing), and fusion reactors operate of course at far higher temperatures than fission reactors.

I have trouble seeing how one would consider neutrons per square meter to matter more than neutrons per MeV. Because neutrons determine what you're going to have to replace, and energy determines how much money you get from selling the power to pay for said maintenance. You can spread it over a broad area and do infrequent replacements, or have it confined to a tight area and do frequent replacements, the same amount of material is effected. Some degree of downtime for maintenance is normal in power plants - even "high availablility" fission plans still only get ~85% uptime.

Comment Re:sunfire / in my stellerator / makes me... happy (Score 1) 94

Hmm, thought... and honestly, I haven't kept up on fusion designs as much as I should have... but has there been any look into ionic liquids as a liquid diverter concept? In particular I'm thinking lithium or beryllium salts. They're vacuum-compatible, they should resist sputtering, they're basically part of your breeding blanket that you need already... just large amounts, flowing, and exposed. Do you know if there's been any work on this?

Comment Re:sunfire / in my stellerator / makes me... happy (Score 2) 94

The plasma facing material faces a flux of 1 neutron per 17,6Mev. By contrast, nuclear fuel cladding faces a flux of ~2,5 neutrons per 202,5 Mev, or 1 per 81 MeV. It's certainly higher, but it's not a whole different ballpark. And yes, you're dealing with higher energy neutrons but in a way that can help you - you've often got lower cross sections (for example), and in most cases you want the first wall to just let neutrons past.

There's a number of materials with acceptable properties. Graphite is fine (no wigner energy problems at those temperatures). Beryllium is great, and you need it anyway. In areas where the blanket isn't, boron carbide is great. Etc. These materials aren't perfect, but they're not things that get rapidly "converted into dust" by neutrons. Really, it's not the first wall in general anyway that I'd have concerns about, it's the divertor. The issue isn't so much that it takes a high neutron and alpha flux and "erodes" fast - that doesn't change the reactor's overall neutrons per unit power output ratio, and if you have a singular component that needs regular replacement, said replacement can be optimized. The issue is that you have to bear such an incredible thermal flux on one component. Generally you want to spread out thermal loads, it makes things a lot easier.

Comment Re:Fusion energy is impractical (Score 1) 94

When a fast neutron hits an atom it knocks it out of its position and frequently changes it to a different element/isotope.

The same applies to slow neutrons, so....? Your average 14,1 MeV neutron is most likely to inelastic scatter down to the point where more exotic reactions than (n, gamma) are basically impossible (excepting a few specific cases, like 6Li(n,t)4He - again, not dangerous). Only a small percentage of your 14,1MeV neutrons (depending on the material they're passing through) have a chance of undergoing anything more than a standard (n, gamma) transmutation. Unless the system is specifically designed to cause that (for example, a beryllium multiplication in the lithium blanket). The standard case is inelastic scatter once or twice -> elastic scatter a bunch -> become partially or completely thermalized -> capture.

This turns a solid structural material into a radioactive powder

What happens depends entirely on what's being bombarded. Many materials are perfectly fine after long periods of exposure - slow or fast neutrons. Light ions in particular are usually either A) relatively unaffected (sometimes requiring sufficient heat for proper annealing, sometimes not), or B) incredibly good absorbers, leaving nothing dangerous behind. See a more detailed breakdown above.

Comment Re:Port Design (Score 1) 114

What if the perfectly approved Apple cable has been chafed and is now shorted to ground? Fail gracefully.

That's what you might think, but I'm gonna go out on a limb and say a cable that would fail gracefully when shorted to ground would not pass mains voltage mains to ground (e.g. the phone case). Read the articles before you blame shoddy aftermarket chargers, as the 2nd one involved a genuine Apple charger; but what you're saying is that the cable, connector, and/or device should somehow prevent this.

Comment Re:Intel's biggest competitor: Intel (Score 1) 276

IOn the software side of things, Microsoft can force people to Windows 10, but Intel can't force people to, say, go from i3 to i5.

I think that's why Intel has partnered with MS on Windows 10 with the hardware statements. Intel will be sure to mod the CPUs, making older version obsolete, forcing new OS/Hardware cycles. It's going to happen, you just know it.

Comment Re: Context On the Issue (Score 1) 363

Hint: fix your broken update system first.

The Nexus line, being vanilla Android without any vendor- or carrier-specific modifications, has a very well-defined update system that works quite well. Google can't update system images that have been modified by 3rd parties (even on a Nexus; if you root or otherwise modify the system, you must flash a fresh factory image to update) lest they break things by replacing modified binaries with new, incompatible ones. This is why Google only directly updates their own devices.

No buying a nexus doesn't fucking count.

So you'd rather blame Google for the actions of Samsung, HTC, LG, AT&T, Verizon, Sprint, and T-Mobile?

Not everyone wants a shitty spy on me phone.

Which is why they don't buy from Apple, Microsoft, Samsung, or HTC, or use any phone sold by AT&T, Sprint, or Verizon (CarrierIQ). That leaves LG on T-Mobile, cheap Korean and Chinese knock-offs that likely have their own spyware and backdoors baked in, and the Nexus line. Oh, and Blackberry, but really?

Or were you trying to insinuate that Nexus phones are covert spy devices? And, if so, what makes you think Google would allow any other Android device to be different if they were in charge of updating them all?

The amount of outright ignorance in your post would be astounding if you weren't AC.

Comment Re:Intel's trolling us (Score 1) 276

Intel's FPUs have always sucked compared to anyone else's, well, almost anyone else. Intel was virtually the last player on the block to integrate an FPU. This may surprise you, but Intel X86 CPUs are just about the worst pieces of silicon you can buy today. They are not good by any measure other than ubiquity. They aren't the fastest either in case you're wondering. Oh, and those AMD record holders are RISC chips IIRC underneath, not X86 architectures.

Comment Re:Venus (Score 1) 305

Plant cultivation is far, far harder on Mars, for many reasons.

1) Natural light: the solar constant is 1/5th as much on Mars as on Venus, and you're guaranteed to have dust clinging to your greenhouse glazing. More on this later.

2) Electricity: Same for solar power. And fission power systems (as opposed to radiothermal, which is far too weak) are 1) a rather expensive line-item to your development costs, 2) heavy to transport, and 3) complex (complexity is not good when it comes to operation in space). Beyond this, most people vastly underestimate how much power it takes to grow plants under lights - you need 1-2 orders of magnitude more area of solar panels than the area of plants you can grow. And the size of the LED lighting systems you'd need is very significant in its own right. Plants consume way more light to grow than most people give them credit for. The real world isn't The Martian where one can grow potatoes on normal room lights ;)

3) Room: Abundant, practically unlimited space comes free with a Venus colony. Space is extremely expensive on a Mars colony - it's a pressure vessel. Another downside to limited space: plants don't like it. It leads to humidity and temperature instabilities and buildups of gases like ethylene that are far more poisonous to plants than carbon monoxide is to humans. These gases break down, particularly in sunlght, so in big areas they're not a huge problem - but in confined spaces, they can deform and kill your plants readily. Pests and diseases also thrive much more in confined spaces.

(My comments on plants come from experience: I grow a small "jungle" in an indoor environment, entirely on artificial light)

So, while it is of course possible to grow plants on Mars, it's far, far easier on Venus.

As for opressiveness, once a wall is opaque, you can't really perceive how thick it is.

Indeed, I wasn't talking about wall thickness :) Just the issue of being enclosed in small spaces. Most designs call for integrating as many windows as they can, but that's always going to be limited - windows are a lot heavier for a given amount of surface area and can't be shielded for radiation exposure.

And I'm not sure how attractive Venus would be in comparison

So, you don't get a landscape, that's true - the surface isn't visible there. But at the desirable altitudes, there is still a "view", the clouds are dynamic there. A few kilometers further up and it's just a continuous haze (which may lead to rainbow effects below, there are some papers debating this ;) ), but in the "earthlike" layers clouds will come and go. Like living among the clouds on Earth.

But no, you don't get a landscape outside. Your landscape is the Garden of Eden you make inside, surrounded by clouds. :)

There's also those ever-present lightning storms all around you - that's going to be noisy, and a serious maintenance issue

The current state of research isn't "ever-present lightning". Again, unfortunately our knowledge of Venus is so poor compared to Mars, so it's hard to make definitive statements. But lightning appears to be "about" as common on Venus as it is on Earth.

Another thing that we need to learn more about is atmosphere variation. We've seen what appears to be significant variations in sulfur levels on Venus over time - it seems that the sulfur may be the result of frequent or continuous volcanic activity. So how the atmosphere will vary over time is an important question to be able to answer before we can send humans.

And how do you plan to prevent lightning strikes through your habitat?

Again, we don't know the distribution of lightning between a) different altitude layers, b) different latitudes, and c) over time. We actually don't know at this point if it's ever a risk at all - and if it ever is, whether it's avoidable or not. If it's not avoidable, then yes, one would need lightning protection (I presume faraday cage-style rather than any sort of ion shield), which would add mass and require a more difficult testing regime. If it is avoidable, or is never a problem: then there's no issue.

Definitely need more data on this one before we can send humans! It's time to stop neglecting Venus.

but since you're in the middle of the cloud layer they won't actually be getting anywhere near as much sunlight as they would in orbit, maybe not even as much as they would on Earth or Mars

Actually no :) The light levels at acceptable flight altitudes (~51-55km) are comparable to Earth on a clear day (except that you also have almost as much light also reflecting up at you as coming down at you). Depending on the frequency, it blocks about half of the light from the sun - but twice as much light hits Venus. Mars, however, gets 40% as much light as on Earth - when the dust isn't blowing. Sometimes you get dust storms which can last for months, easily enough to kill plants from lack of sunlight.

Note that solar panels don't have to be outside the envelope, if the envelope is transparent (which I've been assuming thusfar). They can even be built into structural elements (for example, solar roofs on shelters or walkways). It'd cost under 10% of the power, and in turn they'd be shielded from winds, lightning (if a risk), icing (if a risk), corrosion, etc, and your wiring needs would be greatly reduced. I really don't see a point to having anything outside the envelope except for the return rocket (even that's not 100% necessary, but probably a lot easier than a rocket-sized drop-bay ;).

If the ambient pressure is ~1atm, then you have roughly as much air above you as you would on Earth, but without a magnetosphere you're going to be counting on that air to block a lot more radiation.

I read a paper about this before but can't be bothered to dig it up again ;) Okay, okay, just a second.... hmm, this may have been the one. They simulated the Carrington Event and one previous one that was even stronger, and found that even they wouldn't be problematic at 62km (let alone a more realistic 53-54km, which has orders of magnitude more atmosphere over it). That is to say, they calculate 0,09Gy. Radiation therapy in humans is 45-80Gy. A CT scan is 0,008 Gy. So it's like getting a dozen CT scans, but nothing like undergoing radiation therapy. And that's at a much higher altitude than people would actually live at. Long-term GCR at actual colony height, according to their graphs, would be about 1e-8Gy/20h, or 4,4e-6Gy/year - not at all "dangerous". Levels are indeed higher than on Earth, but they're not problematic like they are on Mars. You don't need added shielding, you're sitting under a mass of shielding equivalent to a ~5 meter tall column of water. And the atmosphere above you creates a small induced magnetic field to boot.

Comment Re:Don't have a problem with it (Score 1) 363

Could have bought a Nexus maybe, but that would be the only equivalent in the Android world.

All the other Android devices are alternatives; you're right, though, they're not equivalent. So, where are all the alternatives in the iPhone world?

I see this argument a lot and, really... REALLY? Of course the Android equivalent to the Apple model of developing the OS and hardware is the only line of phones Google develops. Duh much? If someone doesn't like what Apple or Google are offering on the hardware side, where are they to go? Windows? Hah! Blackberry? Hah! So they end up with one of the hundreds of other Android models available. Where is that selection for iOS?

Slashdot Top Deals

Elliptic paraboloids for sale.

Working...