Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!


Forgot your password?
Slashdot Deals: Deal of the Day - Pay What You Want for the Learn to Code Bundle, includes AngularJS, Python, HTML5, Ruby, and more. ×

Comment Re:Cost of access is key. (Score 1) 314

That was not my point. Ofc we can improve ISP. No idea how much that improves either 'performance' or drops price.

It improves performance a *lot*. As for price, it depends on how expensive that rocket system is. For first stages, an improvement in ISP's effect on the size of the rocket isn't that much greater than linear. But the further up the delta-V chain the engine is used, the more of an impact it has on everything that was used to get it there. An extra hundred sec ISP on a first stage might reduce the system mass by a third; on a second stage up to LEO, maybe cut it in half; on a kick stage for a Mars transfer orbit, maybe cut it by two thirds. On an ascent stage from the surface of Mars... well you get the idea. Shrinking down a rocket to a small fraction of its size - fuel, tankage, and engines - well, that's really significant. ISP is very, very important for upper stages. So you can afford to pay quite a bit for those top stages if it improves their performance. Just not an "unlimited" amount.

There is no way a high tech electrical engine will improve its performance by 10% regardless how much money or time you put into it: the efficiency is already between 98.5% - 99.5%, up to 99.9% in some cases.

This is getting a bit offtopic, but at least the electric engines in EVs don't usually run at nearly that high. Depending on the type they might average 85 to 94% on average. It varies over their load cycle.

Regarding rockets: there is simply not much margin anymore in changing the form of the exhaust tube, burn chamber etc

Actually you can. The general principles of how rocket engines work are fixed, of course - your exhaust will never exceed its local speed of sound in the throat, and then you want to expand it as close to ambient pressure as you want. But the details vary greatly. There's bell nozzles, linear nozzles, annular nozzles, aerospikes, throatless nozzles, atmospheric wake compression, and on and on. There's tons of different ways - developed, in development, and in theory - to pump and inject your propellants - where they need to be pumped at all. Even many propellants that are traditionally thought of as being in one state can be implemented in other states. There's various ways - developed, in development, and in theory - to prevent nozzle erosion. To improve regeneration. To reduce mass. And on and on and on. Rocket combustion is a rather complex thing and we're still trying to get a handle on it. Do you know that we still really don't know how aluminum burns in solid rocket propellant? There's something like five different competing theories. I mean, things like this are a Big Freaking Deal(TM), especially when such small improvements in upper stage ISP have such significance for lower stage mass. And even on your lower stages there's a lot of things that have a big effect on your system cost. For example, how to stop resonant shocks from ripping them up - a lot of people don't realize that one of the main benefits of adding aluminum first stage to propellant mixes is that the droplets of burning aluminum damp shocks. (yeah, it increases ISP too by raising the exhaust temperature, but it also has disadvantages, such as not contributing to expansion, slowing down gases (particularly near the nozzle), and impacting/eroding the throat (or even forming an accumulating slag)

Re, nuclear+chemical. There are proposals for this. The main issue isn't efficiency - the extra chemical energy doesn't make that much of a difference - but thrust. The downside to nuclear thermal is that the reactor is so heavy (fission is like that, unfortunately) that the mass ratio is only something like 3-4:1. That's really bad (you generally get 15-20:1 or even better for a chemical first stage). So the approach is to inject oxygen early in the ascent phase for added thrust, but only run on hydrogen higher up when gravity losses are lower. I'm really not that sanguine about nuclear thermal rockets getting a serious development program any time soon, though. The public overestimates the risk, of course - not only am I sure they'd well seal the fuel elements against whatever damage would be incurred by explosion or reentry, but there's the simple fact that the fuel is "fresh", not contaminated with the more hazardous actinides. But it's going to be a hard sell. And a really hard development project, if they ever did try again. Gigawatt-scale flying nuclear reactors that pose radiation hazards during assembly and test aren't exactly childs' play.

Comment Re:The guy aint no Sagan... (Score 1) 314

You forgot to exclude operational expenses.

Yes, people to run robots and comm time on the DSN. We're not talking about massive expenses here. The real expenses are the capital costs.

And also didn't mention that you can't just lob chunks of metal straight to Earth's surface,

Actually, you really just can. Even random rocks from space - not shaped for optimal entry shape, not cemented together by anything yet what nature chose to gie them - do this all the time. They have to be between a certain size range (too little and the whole thing ablates; too large and it explodes, either in the atmosphere or on impact), but the random creations of nature do it; delberately shaped and sintered projectiles should have no trouble with it, with (proportional to their mass) relatively little burnoff.

You would, of course, need a rather large area designated as the impact area; even with very precise aiming, by the time they get to Earth and undergo reentry the random variables will spread them out over a sizeable chunk of land. A large salar might be ideal, since they get resurfaced periodically so the impacts wouldn't be damaging the landscape.

By your same logic, the mining of minerals on Earth would be zero dollars per gram if the equipment was solar powered and automated

It's almost as if I didn't discuss capital and ongoing costs in my above post.

Launch costs really are key to the rate of development at the very least, in that they limit the rate in which funding can be raised for the necessary exploratory and test craft to be launched. Even if the economics for operating a mine on a NEO works out really well at present launch costs, you have to prove that you can do it before you can raise the billions to build it. And to prove that you can do it you have to launch a number of missions while you're still relatively poorly funded. They face the same problem that Bigelow has faced - a probably reasonable business plan but the early phases hinging around factors that they don't control.

It does nobody any good to pretend that the lack of a space economy is because investors are cowards and morons

I think you need to go back and read my last post again, particularly all of the "it's too early to say"/""we don't know"/"but time will tell"/etc lines. I'm not saying that at all. I'm saying that there very well could be a compelling case for asteroid mining even without any radical changes in space technologies. But there's a great deal of work to prove that before we can get to that point.

Comment Re:seriously? (Score 1) 77

Are the other variants more dialectal? In addition to huoji ( / ) (fire chicken) what I read states that there's also qimianniao ( / ) (seven-faced bird), tujinji ( / ) (cough up a brocade chicken) and tushouji ( / ) (cough up a ribbon chicken)

(hope Slashdot doesn't mess up the characters)

Comment Re:seriously? (Score 1) 77

On the other hand I would want to talk to Archimedes

You speak ancient Greek and can communicate with the dead? Okay, I'm impressed. ;)

Thanksgiving trivia for the day: the word for "turkey" comes from extensive and long-running confusion about where the bird came from. For example, in English it's called Turkey. In Turkey it's called "hindi", referring to India. In India it's called Peru. In Peru it's called "pavo", referring to peacocks, which are native to south and southeast asia, such as India (cyclic there), Cambodia, Malaysia, etc. In Cambodia (Khmer) it's called "moan barang", meaning "French chicken", while in Malaysia it's referred to as "ayam belanda", meaning "Dutch chicken". Both of those in turn think it comes from India: in French it's called "dinde" (from "poulet d’Inde", aka "chicken of India"), while in Dutch it's "kalkoen", referring to a place in India. Greek has a number of local dialectal names, such as misírka, meaning "egyptian bird", while in Egypt it's called dk rm, meaning the Greek bird (even though the latter part of the name derives from Rome - the Italians, by the way, thinking it comes from India). One variant of Arabic even credits it to Ethiopia.

A couple languages deserve special credit for their words:

Best accuracy: Miami indian - nalaaohki pileewa, meaning "native fowl"
Worst accuracy: A tie between Albanian (gjel deti, "sea rooster"); Tamil (vaan kozhi, "sky chicken"); and Swahili (bata mzinga, "the great duck")
Most creative: Mandarin - many names with meanings such as "cough up a ribbon chicken" and "seven-faced bird"
Least creative: Blackfoot: ómahksipi'kssíí, meaning "big bird". Hmm...

Comment Re:The guy aint no Sagan... (Score 1) 314

Except that your cost examples are based around the price of rocks brought back as a "oh and we're going to do this too" mission add-on. It would be like as if I flew to America to visit my grandmother for Christmas via purchasing a $700 plane ticket and while I was there I bought a $15 sweater and brought it back, and you said, "See, she paid $715 to go to America and buy a sweater - American sweaters are unjustifiably expensive!" You simply cannot take the cost of the Apollo mission, divide by the mass of rocks returned, and pretend that that's anything even remotely close to the cost of retrieval per gram.

What's the actual cost of space mining? It's too early to say. But the mining of NEOs could be as little as *zero* dollars per gram (excluding capital costs and maintenance), insomuch as it would be possible to fire sintered minerals (using solar power) via a coilgun onto an aerocapture trajectory. You don't actually have to have a rocket to bring them back. What would the capital costs be like? That we don't know - again, it's too early to say. But it's normal for large mines on Earth to cost billions of dollars, and what one can do with a large mine on Earth one could do with a vastly smaller mine on a NEO due to the superb mineral concentrations on some of them. There are a number of peer-reviewed papers putting forth that it could work out to be economical (I was reading one from the USGS just the other day) as a result of this.

But time will tell. It's going to take a lot more basic research and engineering before we can get a good sense of just what it would cost to get what sort of throughput of what sort of minerals.

Comment Re:Space-based Economy (Score 2) 314

As usual, "pop science" news overstated the case. We know that there's ppm quantities of water in most lunar regolith, but that's not what people usually talk about. There's also a good degree of confidence that there's a lot of *hydroxyl* group in a lot of places on the moon. But the connection between that and the group being specifically water is much weaker - and many missions sent to detect water in likely areas have failed. The best evidence for water have come from Chandrayaan and LRO, examining craters that were considered likely to find ice. They have both failed to find "slabs" of ice in the crater, but found evidence for ice grains in the regolith - about 5% according to LRO. On Earth that would be considered dry soil, but it's something at least.

Of course, if you're constraining yourself to such craters, you're really constraining where you can go. On the general lunar surface, the sun bakes water out of the regolith.

Iron, aluminum, and titanium are very useful for making things

They're all tightly locked up as oxides, without the raw materials that we use to refine them on Earth being available. There are however tiny grains of raw iron in the regolith, so there is some potential to comb it out magnetically. Still, asteroids present by far better resource options in much greater concentrations.

There really is just no reason to do your work in a gravity well as deep as the moon's, and then have to break out of it, when you can just mine NEOs. Yes, it's "half the gravity of Mars", but it's vastly more than asteroids. Rockets with a couple thousand spare m/s delta-V don't just grow on lunar trees.

Comment Re:Space-based Economy (Score 1) 314

The moon's surface is kind of boring, as far as geology goes. Aluminum oxide, titanium oxide, iron oxide, silicon dioxide... by and large it's stuff that's really common on Earth. And not much of the common stuff that's super-useful, like water. And really, it's way more of a gravity well than is ideal to have.

Comment Re:Cost of access is key. (Score 1) 314

No no, we can get much more than a 1-2% improvement in chemical rocket performance. The issue is that for our needs thusfar (large objects to LEO and GEO, small objects further out with long transit times and gravity assists or ion propulsion), H2/O2 has been fine and it's not been worth all of the headaches of more energy dense fuel mixtures, like Li-(LF2|FLOX|OF2)-LH2 triprop. But we can indeed get a 25% improvement in ISP if we're willing to work with very hazardous, toxic chemicals (at least the resultant LiF isn't as toxic as F2!). It was already done in a lab-scale development back in the late 1960s. And let's not kid ourself, NASA has indeed launched successful missions using toxic, corrosive and dangerous chemicals as propellants. But this would be a new upper bound in this regard. I doubt they'd ever use a propellant like that on a lower stage, but for an upper stage or a return stage... it's a possibility.

Without invoking significant toxicity we can improve the picture somewhat. Burning the lithium with O2 (and of course H2 for exhaust flow reasons) is also a very high energy propellant, but it still means working with metallic lithium in some form or another (liquid, hybrid, slurry, cryosolid, etc), which most people would really like to avoid. But it is possible to do.

A small boost to H2/O2 can be made with aluminum - it only boosts the Isp a few percent (I believe about 4%-ish, though I'd have to double check), but it also gives a nice secondary bonus of really increasing your propellant density. Aluminum is neither dangerous nor toxic, but burning it with the H2/O2, and in a reliable manner, hasn't been tackled yet.

Boron is another high-energy compound one can use. As is beryllium (Be-F2-H2 is even more powerful than Li-F2-H2 by a small margin), but it's hugely expensive and extremely toxic in dust form.

Beyond all of the "familiar" stuff there's a lot of research on more exotic compounds with strained chemical bonds which remain in a metastable state until burned; there's way too many such compounds to list here. But at present they all generally suffer from either production cost issues or problematic instabilities.

Oh, and you can also improve performance by increasing the chamber pressure. That said, it's rather modest - if I recall a doubling of chamber pressure is usually on the order of a 7% ISP boost. But it does mean that advances in material technologies can translate to advances in rocket ISP. And there's also a wide range of other modifications to engine design that could boost rocket ISP to lesser extents.

Comment Re:Cost of access is key. (Score 1) 314

Staging works pretty well to get around the energy density problem, at least early on.. though the rocket equation starts getting pretty tyrranical when it comes to returns from other planetary bodies. It's really hard to conceive of a manned Mars mission with return that doesn't involve at least the return ascent stage being fueled by one of the following:

1) In-situ propellant production
2) Extreme-ISP chemical propellant
3) Nuclear thermal

You can't rely on ion propulsion (even higher power variants like VASIMR) to get you off the ground. Nuclear thermal (1) should work (NERVA showed promise), but the development costs will be huge and it'd face massive public opposition, having that much nuclear fuel on a single craft. It also puts a rather large minimum size for your ascent stage - fission doesn't scale down well, and even as big as it was NERVA only had a thrust to weight ratio of 3 to 4. And the mass of that large, heavy ascent stage imposes significant mass penalties on your earlier stages, partially negating the benefit of that 800-1100 sec ISP.

For more advanced chemicals (2), there's lots of theoretical stuff, but with stuff that we could do today for a practical cost, it'd probably pretty much have to be some variant of lithium/fluorine/hydrogen triprop. The oxidizer could be LF, FLOX, OF2, or a couple other possibilities... but if you want an ISP(vac) from chemical propellants in 500-550 range and good density, that's pretty much what you have to do (yes, the LM and CSM used toxic, corrosive, dangerous propellants too, and NASA managed fine, but these are even worse). And even still, 500-550 sec is low enough that you'd probably still want some sort of ion "tug" cycler to move you between LEO and LMO, with your fuel only used for ascent.

If you don't want to or can't do either of those two options (#2 and #3), you're pretty much stuck with in-situ production (unless you want to have to launch a LOT of tonnage into orbit!) Which is why that's SpaceX's focus... it probably is the best option. Still, though, it's a challenge and a risk, no question.

Comment Re:Affirmative Action won't take us to Mars. (Score 1) 314

I think his job is more "ticking large numbers of people off". For example, he was one of the leaders behind the "Pluto, Eris, Ceres, etc aren't planets" movement - he had references to Pluto being a planet removed from the Hayden Planetarium years before the IAU vote. He's not exactly popular among those who felt that hydrostatic equilibrium was the relevant constraint and that the "cleared the neighborhood" definition is fundamentally flawed.

Comment Re:The guy aint no Sagan... (Score 1) 314

Which is silly, because the Apollo mission was primarily oriented around the physics of getting a bunch of large mammals into space, keeping them alive on the way to the moon, landing them on the moon, keeping them alive down there while they explore, and then doing all of that in reverse. If they hadn't brought a single rock back the total change to the mission cost would have been almost unnoticeable.

Furthermore, who's focused on mining the moon? Most mining proposals focus on mining NEOs. It's way easier to get material from a NEO to Earth aerocapture. You could do it with a coilgun with no expenditure of consumables, again and again for years on end. They're also far more rich in interesting materials - much better than the best mines on Earth, and with no overburden.

Mommy, what happens to your files when you die?